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Given a composite null P and composite alternative Q, when and how
can we construct a p-value whose distribution is exactly uniform under the
null, and stochastically smaller than uniform under the alternative? Similarly,
when and how can we construct an e-value whose expectation exactly equals
one under the null, but its expected logarithm under the alternative is positive?
We answer these basic questions, and other related ones, when P and Q are
convex polytopes (in the space of probability measures). We prove that such
constructions are possible if and only ifQ does not intersect the span of P . If
the p-value is allowed to be stochastically larger than uniform under P ∈ P ,
and the e-value can have expectation at most one under P ∈ P , then it is
achievable whenever P andQ are disjoint. More generally, even when P and
Q are not polytopes, we characterize the existence of a bounded nontrivial e-
variable whose expectation exactly equals one under any P ∈ P . The proofs
utilize recently developed techniques in simultaneous optimal transport. A
key role is played by coarsening the filtration: sometimes, no such p-value or
e-value exists in the richest data filtration, but it does exist in some reduced
filtration, and our work provides the first general characterization of this phe-
nomenon. We also provide an iterative construction that explicitly constructs
such processes, and under certain conditions it finds the one that grows fastest
under a specific alternative Q. We discuss implications for the construction
of composite nonnegative (super)martingales, and end with some conjectures
and open problems.

1. Introduction. Consider a universe of distributions Π on a sample space (X,F),
where X is a Polish space. The data are generated according to some P ∈ Π. Let P and
Q be disjoint subsets of Π. When we say we are testing P , we mean that we are testing the
null hypothesis P ∈ P . When we say we are testing P against Q, we mean additionally that
the alternative hypothesis is P ∈Q.

We ask (and answer) several central questions in this paper. The first one is:

(Q-exact-p). Given a null P and an alternative Q, when can we find an exact p-
value for P that has nontrivial power underQ? To elaborate, we would like to find
a [0,1]-valued random variable T that is exactly uniform for every P ∈ P , but is
stochastically smaller than uniform under every Q ∈Q.

The second central question in this paper is the following:

(Q-exact-e). Given a null P and an alternative Q, when does there exist an exact
e-value for P that has nontrivial power under Q? To elaborate, we would like to
find a nonnegative random variable X such that EP [X] = 1 for every P ∈ P , but
EQ[logX]> 0 (or EQ[X]> 1) for every Q ∈Q.
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2 1 INTRODUCTION

We will provide a complete answer to both questions in this paper, when P andQ are convex
polytopes in the space of probability measures on X. The solution is surprisingly clean and
will be explained soon below.

We also answer the non-exact versions of both problems, where we only require the p-
value T to be stochastically larger than uniform under any P ∈ P :

(Q-general-p). Given a null P and an alternative Q, when does there exist a p-
value for P that has nontrivial power against Q? (see Terminology below.)

Or, for the e-value, we require that EP [X] 6 1 for any P ∈ P :

(Q-general-e). Given a null P and an alternative Q, when does there exist an
e-value for P that has nontrivial “e-power” against Q? (see Terminology below.)

For these non-exact problems, we can still provide a clean characterization of the existence
for both (Q-general-p) and (Q-general-e). An immediate follow-up question is:

(Q-power). Suppose that we know the p-values or e-values in the above questions
do exist. How can we algorithmically construct powerful, or even optimal, ones?

This question is important for the application of our ideas in hypothesis testing.
These appear to be rather fundamental questions, and our answers will be proved using re-

cent techniques in simultaneous optimal transport, combined with classical convex geometric
arguments. A natural motivation for exactness of p-values and e-values comes from the trivial
observation that, in the case of a simple null hypothesis, any non-exact p-value or e-value can
be strictly improved. Although this is not necessarily true for composite hypotheses, the ex-
istence of such exact p-values and e-values, as well as the trade-off between exactness and
power, is useful for the design of tests.

Note that in the characterizations for (Q-exact-p) and (Q-general-p) above, a technical
condition of joint non-atomicity will be assumed, which is essentially equivalent to allowing
for external randomization. Our proofs are constructive and yield a simple iterative construc-
tion addressing (Q-power), called SHINE (Separating Hyperplanes Iteration for Nontrivial
and Exact e/p-variables), that can in principle explicitly build these objects and calculate their
values on a given dataset, but it is only computationally feasible for low-dimensional settings.

Towards the end of the paper, we show how answers to the above two questions help
answer a final related question:

(Q-martingale). Given a null P and an alternative Q, can we determine if
there is a nonnegative (super)martingale M for P∞ that grows to infinity un-
der Q∞? In other words, when can we find a process M that is a nonnegative
(super)martingale under P∞ simultaneously for every P ∈ P , but it almost surely
grows to infinity under Q∞ for every Q ∈Q?

Before proceeding, we introduce important terminology used throughout the paper.

Terminology. We define pivotal, exact, and nontrivial e- and p-variables below.

1. A random variable X is pivotal for P if X has the same distribution under all P ∈ P .
2. A nonnegative random variable X is a e-variable for P if EP [X] 6 1 for all P ∈ P . An

e-variable X for P is exact if EP [X] = 1 for all P ∈ P . We say X is nontrivial for Q
if EQ[X] > 1 for all Q ∈ Q. An e-variable X for P is said to have nontrivial e-power
against Q if for each Q ∈Q, EQ[logX]> 0.

3. A nonnegative random variableX is a p-variable for P if P (X 6 α) 6 α for all α ∈ (0,1)
and P ∈ P , and a p-variable X is exact if P (X 6 α) = α for all α ∈ (0,1) and P ∈ P . A
p-variable X for P is nontrivial (or has nontrivial power) against Q if, for each Q ∈ Q,
Q(X 6 α) > α for all α ∈ (0,1) with strict inequality for some α ∈ (0,1). Without loss
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of generality, p-variables can be restricted to [0,1] by truncation, without changing their
properties.

Note that an exact p-variable is always pivotal, but not vice versa. An exact e-variable need
not be pivotal, and a pivotal e-variable need not be exact. Since x− 1 > logx, an e-variable
that has nontrivial e-power against Q is also nontrivial for Q. We will often omit P and Q in
our subsequent mentions of p/e-variables when they are clear from the context. Realizations
of e-variables are called e-values. Like many other authors, we do not distinguish these terms
when there is no confusion; the same applies to p-values and p-variables.

REMARK 1.1. For the majority of this paper, we suppress the raw data that is observed
and used to form the p-values or e-values. One may simply assume that we have observed
one data point Z from P. This Z could itself be a random vector of some size n> 1 lying in
(say) Rd for some d> 1 (which means P may be µn for some µ on Rd), but we leave all this
implicit. Thus our p-values and e-values can be treated as “single-period” statistics calculated
on a batch of data. We return to the multi-period (sequential) case briefly later in the paper.

Summary of contributions. We briefly summarize the main results of this paper below.
With the help of techniques from simultaneous transport, the existence of p/e-values for a
convex polytope P and a simple alternative Q = {Q} is fully characterized in Theorems
3.1 and 3.4: under a natural condition of non-atomicity, we show that pivotal, exact, and
powerful p/e-values exist if and only if Q 6∈ SpanP ; powerful p/e-values exist if and only if
Q 6∈ P . Theorems 6.1 and 6.2 extend these earlier results to the case of composite alternatives
that are polytopes: for convex polytopes P and Q, similar conclusions as before hold with
the condition Q 6∈ SpanP being replaced by SpanP ∩ Q = ∅, and the condition Q 6∈ P
being replaced by P ∩Q= ∅. Theorem 6.7 extends these results to the case of general (non-
polytope) infinite P,Q, where the situation is more complicated: we now additionally need
a common reference measure and a closure with respect to the total variation distance.

For the particular case of a simple alternative (Q= {Q}), we can speak of maximizing the
e-power under Q among all exact e-variables. The exact e-variable with the largest e-power
is studied in a series of results including Theorems 4.4 and 4.7, and this finally leads to the
SHINE construction, with maximality of the constructed e-variable shown in Theorem 5.3,
providing an answer to (Q-power).

Finally, the above results directly give rise to an answer to (Q-martingale) by obtaining
sufficient conditions for the existence of a powerful e-process (Corollary 7.1).

Related results. The most directly related work is that of Grünwald, de Heide and Koolen
(2024), which focuses primarily on e-values, and in particular (Q-general-e). To paraphrase
one of their main results, consider any P and Q with a common reference measure, whose
convex hulls do not intersect. They show that as long as a particular “worst case prior” exists,
then one can construct an e-value for P which maximizes the worst case e-power forQ. This
is a topic we return to later in the paper, when we provide a more detailed geometric study of
(Q-general-p) and (Q-general-e) together. We need fewer technical conditions to establish
our results, but their additional assumptions allow them to handle general P,Q that are not
polytopes. See also Harremoës, Lardy and Grünwald (2023) for a very recent follow-up work
by the same group, which relaxes some of the original technical conditions.

A second related work is that of Ramdas et al. (2022). Here, the authors work in the
sequential setting and ask when nontrivial nonnegative (super)martingales for P∞ := {P∞ :
P ∈ P} exist. We can paraphrase their geometric solution: assuming a common reference
measure, nontrivial nonnegative (super)martingales cannot exist if the “fork-convex hull” of
P∞ intersects Q∞.
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The above papers hint at a deeper underlying geometric picture, and our work elaborates
significantly on this theme, completely characterizing the case of convex polytopes. One key
point is that the earlier works did not give a systematic and thorough treatment of what one
can accomplish in reduced filtrations, while this is a central aspect of our paper. Informally,
we will (optimally) transport P to a single measure µ, while transportingQ to a single meas-
ure ν 6= µ, and this collapse of the null and alternative corresponds exactly to working in a
coarser σ-algebra.

The above idea of transport from multiple measures to specified measures is addressed
in the framework of simultaneous transport studied by Wang and Zhang (2023). We borrow
several techniques from their work and build on them significantly to provide answers to our
questions. In particular, our work tightly connects arguably basic testing problems with the
modern theory of optimal transport.

A third classical yet fundamental related work is Kraft’s theorem (Kraft (1955, Theorem
5)), which states that if there is a σ-finite reference measure R that dominates every distribu-
tion in P ∪Q, then for each ε > 0 there exists a [0,1]-valued random variable X with

inf
Q∈Q

EQ[X] > ε+ sup
P∈P

EP [X](1)

if and only if the total variation distance dTV(ConvP,ConvQ) > ε. Kraft’s theorem serves
as a starting point for distinguishing sets of distributions (Hoeffding and Wolfowitz (1958))
and impossible inference (Bertanha and Moreira (2020)). In particular, in Remark 6.3 below
we will see how Kraft’s theorem can answer (Q-general-e) above.

Finally, likelihood ratios play an intimate role throughout our paper, but in rather differ-
ent ways than classical hypothesis testing results. For general composite nulls and altern-
atives, generalized likelihood ratio-based methods require certain regularity conditions in
order for Wilks’ theorem (Wilks, 1938) to apply, which in turn yields an asymptotically ex-
act p-value. An alternative, recent e-value approach is taken by universal inference (Wasser-
man, Ramdas and Balakrishnan, 2020). Our paper takes a very different approach, designing
non-asymptotically exact p-values (Q-exact-p) or non-asymptotically conservative p-values
(Q-general-p), and also doing the same for e-values (Q-exact-e, Q-general-e). We do not
impose the regularity conditions required for Wilks’ theorem to hold (our assumptions are
different and quite mild), and we are interested in when such p-values or e-values exist and
how one can construct them (Q-power). As a rough, but instructive, intuition for how like-
lihood ratios play a role in our work, when deriving exact p-values or e-values, our method
tries to find a transport map that can simultaneously transport the entire composite P into a
single uniform U , while simultaneously transporting the composite Q into some distribution
F 6= U . Now, having effectively converted the given composite problem into a point null U
and a point alternative F , one can use simple likelihood ratios to design either the p-values
or e-values.

Background on e-values. E-values are an alternative to p-values, and they have recently
been actively studied in statistical testing by Wasserman, Ramdas and Balakrishnan (2020),
Shafer (2021), Vovk and Wang (2021), Grünwald, de Heide and Koolen (2024), and Howard
et al. (2021) under various names. Tests based on e-values are closely related to nonneg-
ative supermartingale techniques for testing and estimation, which date back to work by
Robbins (Darling and Robbins, 1967; Robbins and Siegmund, 1974), and they emphasize
continuous monitoring, optional stopping or continuation of experiments. The notion of e-
processes generalizes that of likelihood ratios to composite hypotheses (Ramdas et al., 2022).
Some advantages of testing with e-values are summarized in Wang and Ramdas (2022, Sec-
tion 2). The idea of testing with e-values is intimately connected to game-theoretic prob-
ability (Shafer and Vovk, 2001, 2019). For a recent review on e-values and game-theoretic
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statistics, see Ramdas et al. (2023).

Notation. We collect the notation we use throughout this paper.

1. Topology. For a set A⊆Rd, A◦ (resp. A, ∂A, Ac, ConvA) is the interior (resp. closure,
boundary, complement, convex hull) of A and affA is the smallest affine subspace of Rd
containing A. For an affine subspace S ⊆Rd, we denote by ri(A;S) is the relative interior
of A in S, that is, the interior of A in the relative topology on S.

2. Probability and measure. All measures we consider will be finite and have a finite first
moment, i.e.,

∫
|x|µ(dx)<∞. For a Polish space X, we letM(X) be the set of all finite

measures on X and Π(X) be the set of probability measures on X. For µ ∈M(Rd), we
denote its barycenter by bary(µ) :=

∫
Rd xµ(dx)/µ(Rd). For a finite set A of random

variables or probability measures on the same space, we define ConvA and SpanA in the
usual sense of convex hull and span. We write X law∼ P µ, or simply X law∼ µ, if the random
variable X has distribution µ under P . We say “a probability measure µ is supported on
a set A” if µ(A) = 1. This does not imply that A is closed or A = suppµ. The product
measure is denoted by P ⊗Q. If P = {P1, . . . , PL} and Q= {Q1, . . . ,QM} are two sets
of probability measures on X, we sometimes denote the tuple (P1, . . . , PL,Q1, . . . ,QM )
by (P,Q). For P,Q ∈M(X) we write P �Q if P is absolutely continuous with respect
to Q (sometimes we say Q dominates P ), and P ≈Q if P �Q� P .

3. Stochastic orders. For F,G ∈Π(R), we write F �st G if F ((−∞, a]) >G((−∞, a]) for
all a ∈R. Also, F ≺st G if F �st G and F 6=G. For µ,ν ∈M(Rd), we denote by µ�cx ν
if
∫
φdµ 6

∫
φdν for every convex function φ, in which case we say µ is smaller than

ν in convex order.1 If µ,ν are probability measures and X law∼ µ, Y law∼ ν, we sometimes
abuse notation and write X �cx Y instead of µ�cx ν. We write µ6 ν if µ(A) 6 ν(A) for
every Borel set A.

4. Other notation. Bold symbols such as x and α will typically denote vectors. Write 1d =
(1, . . . ,1) ∈ Rd, 0d = (0, . . . ,0) ∈ Rd, Id = {x ∈ Rd | x1 = · · ·= xd} = R1d, and I+

d =

{x ∈ Rd | x1 = · · ·= xd > 0}= R+1d. When the dimension d is clear, we may omit the
subscript d and write 1,0,I,I+ instead. We let U1 denote the Lebesgue measure on [0,1].
Denote the Euclidean norm by ‖·‖.

Outline of the paper. The rest of this paper is organized as follows. Section 2 provides
the necessary mathematical background regarding convex order and simultaneous optimal
transport. The easier case with a simple alternative (|Q|= 1) will be solved first in Section 3.
Under suitable conditions, we solve the maximization problem of the e-power in Section 4
and illustrate the SHINE construction for finding a powerful e-variable in Section 5 for a
simple alternative, thus answering (Q-power). We answer (Q-exact-p), (Q-exact-e), (Q-
general-p) and (Q-general-e) in full in Section 6, where we deal with a general composite
(and even infinite) alternative Q. Finally, an application to composite test (super)martingales
related to (Q-martingale) will be discussed in Section 7, followed by a summary in Section 8.
Appendix A contains a few general results on the existence of p/e-values, followed by proofs
of our main results in Appendices B-E. Appendix F contains a few technical results that are
used in our proofs.

2. Preliminaries on convex order and simultaneous transport. In this section, we
collect results related to convex order and simultaneous transport for future use. We rely on
some results from Shaked and Shanthikumar (2007) and Wang and Zhang (2023).

1This is sometimes called the Choquet order in the mathematical literature, e.g., Simon (2011).
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In the setting of classical optimal transport theory, one usually starts with two measures
µ ∈Π(X), ν ∈Π(Y) on Polish spaces X,Y, and a typical goal would be optimizing a certain
functional over (X,Y ) with respective marginals µ,ν (such (X,Y ) are called couplings). The
set of such couplings is also referred to as transport plans. In certain cases, one is interested
in a special class of transport plans where Y is required to be a function ofX . Such couplings
are called transport maps. See Santambrogio (2015) and Villani (2009) for background on
optimal transport.

A coupling (X,Y ) on Rd × Rd is called a martingale coupling if E[Y |X] = X . Given
µ,ν ∈ Π(Rd), a martingale transport (plan) from µ to ν is a martingale coupling (X,Y )

such that X law∼ µ and Y law∼ ν. We recall from Strassen (1965) that there exists a martingale
transport from µ to ν if and only if µ �cx ν (see point 3 in the notation subsection for a
definition). This result is called Strassen’s theorem. The relation �cx is a partial order on
Π(Rd). Given a subset N ⊆ Π(Rd), we say µ is a (Pareto) maximal element in N if there
exists no ν ∈ N such that ν 6= µ and µ �cx ν; we say µ is the maximum element in N if
ν �cx µ for each ν ∈N . These next facts can be found in Shaked and Shanthikumar (2007,
Section 3.A).

LEMMA 2.1. The followings hold for all integrable real-valued random variables:

(i) If E[X] = E[Y ], then X �cx Y if and only if E[(X − a)+] 6 E[(Y − a)+] for all a ∈R.
(ii) If {Xn} is a sequence of random variables that converge weakly to X and E[|Xn|]→

E[|X|], then Xn �cx Y =⇒ X �cx Y.

The recent work of Wang and Zhang (2023) proposed the notion of simultaneous optimal
transport as an extension of classical optimal transport. As explained above, classical optimal
transport theory concerns a coupling between two measures. In the setting of simultaneous
optimal transport, one starts from two d-tuples of probability measures µ = (µ1, . . . , µd) on
X and ν = (ν1, . . . , νd) on Y, and requires that the transport plan (or map) sends µj to νj
simultaneously for all 1 6 j 6 d. If d= 1, this coincides with the classical optimal transport.

Let us give a formal definition. For d > 1 and two Rd-valued measures µ,ν on Polish
spaces X,Y (denoted by µ ∈M(X)d and ν ∈M(Y)d) such that µ(X) = ν(Y), let K(µ,ν)
and T (µ,ν) denote the set of all simultaneous transport plans and maps from µ to ν re-
spectively, i.e., K(µ,ν) is the set of all stochastic kernels κ such that

κ#µ(·) :=

∫
X

κ(x; ·)µ(dx) = ν(·),

and

T (µ,ν) = {T : X→Y |µ ◦ T−1 = ν}.

When d = 1, K(µ,ν) is often represented as the set of all joint distributions on X × Y
whose marginals are µ and ν respectively, but for d > 1, we prefer the above representation.
The mathematical structure of simultaneous optimal transport is very different from classical
optimal transport, and the existence of simultaneous transport plans (or maps) is a non-trivial
question. To further characterize the existence of simultaneous transport maps and plans, we
need the notion of joint non-atomicity.

DEFINITION 2.2. Consider a tuple of probability measures µ = (µ1, . . . , µd) on a Polish
space X. We say that µ is jointly atomless if there exists µ�

∑d
i=1 µi and a random variable

ξ such that under µ, ξ is atomless and independent of (dµ1/dµ, . . . ,dµd/dµ).
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As a simple example, (µ1 × U1, . . . , µd × U1) on X× [0,1] is jointly atomless for each
collection (µ1, . . . , µd) on X. We refer to Shen et al. (2019) and Wang and Zhang (2023) for
more discussions on this notion.

In statistical terms, the hypothesis {P1, . . . , PL} as a tuple being jointly atomless is equi-
valent to allowing for additional randomization, i.e., simulating a uniform random variable in-
dependent of the Radon–Nikodym derivatives (dP1/dP, . . . ,dPL/dP ) for some P ∈Π(X).
It suffices if simulating a uniform random variable independent of existing random variables
is always allowed. Such an assumption is common in statistical methods based on resampling
or data splitting.

PROPOSITION 2.3. Consider µ ∈Π(X)d and ν ∈Π(Y)d. Let λ ∈Rd+ satisfy ‖λ‖1 = 1,
and define µ := λ>µ, and ν := λ>ν . Assume that µj � µ and νj � ν for each 1 6 j 6 d.
Then,

(i) The set K(µ,ν) is non-empty if and only if(
dµ1

dµ
, . . . ,

dµd
dµ

)∣∣∣
µ
�cx

(
dν1

dν
, . . . ,

dνd
dν

)∣∣∣
ν
,

where X|P means the distribution of a random variable X under a measure P .
(ii) Assume that µ is jointly atomless. The set T (µ,ν) is non-empty if and only if(

dµ1

dµ
, . . . ,

dµd
dµ

)∣∣∣
µ
�cx

(
dν1

dν
, . . . ,

dνd
dν

)∣∣∣
ν
.

PROOF. Theorem 3.4 of Wang and Zhang (2023) implies that the statements hold with
λ = (1/d, . . . ,1/d). The more general case follows from Lemma 3.5 of Shen et al. (2019),
in the direction (iii)⇒(ii) there.

We briefly describe the intuition behind this result, which is crucial for our paper. In the
sequel, a coupling (X,Y ) is backward martingale if E[X|Y ] = Y ; that is, (Y,X) forms a
martingale. It is Monge if Y is a measurable function of X . The key observation is that
the pushforward κ#µ mixes the ratios between different coordinates of the (vector-valued)
masses of µ at different places of X; see Figure 1. The “ratios” can be recognized as Radon–
Nikodym derivatives. The “mix” effect can be interpreted as a backward martingale trans-
port, because reversing the transport arrows (or equivalently, looking at the transport in the
backward direction) gives rise to a martingale coupling of the Radon–Nikodym derivatives.
Strassen’s theorem then gives the convex order constraint on the Radon–Nikodym derivat-
ives. In Wang and Zhang (2023), such an observation leads also to the MOT-SOT2 parity that
relates the simultaneous transport to the underlying backward martingale transport, which
will be useful for our purpose when constructing explicitly an e/p-variable. We state a weak
form of the MOT-SOT parity below, which can be proved similarly to Corollary 3 of Wang
and Zhang (2023).

PROPOSITION 2.4. Let µ ∈ Π(X)d and ν ∈ Π(Y)d satisfy µ� µd, ν � νd (where we
recall that µd is the d-th component of the vector-valued measure µ), and K(µ,ν) non-
empty. Suppose that µ is jointly atomless and (dµ/dµd)|µd is atomless. Then there exists a
backward martingale coupling between (dµ/dµd)|µd and (dν/dνd)|νd that is also Monge.

2Here, MOT stands for martingale optimal transport, and SOT stands for simultaneous optimal transport.
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Figure 1: A showcase of simultaneous transport: here the input vector µ is two-dimensional,
as is the output vector ν . The two input distributions are discrete distributions over the
same alphabet of size six and are drawn in different colors in the top row, with the height
of a bar indicating its mass. The two target distributions are binary, indicated on the bot-
tom row. The simultaneous transport requires that the maps that transport from µ1 to
ν1 (left) and from µ2 to ν2 (right) are identical. This map is achieved by mixing (aver-
aging) the Radon–Nikodym derivatives. Denoting ν̄ = ν1 + ν2 and µ̄ = µ1 + µ2, we have
dν1
dν̄ (1) = 1

3

(
dµ1

dµ̄ (1) + dµ1

dµ̄ (3) + dµ1

dµ̄ (4)
)

, and analogously for the other coordinate.

Moreover, if we denote by h the map that induces this Monge transport, then there exists a
simultaneous transport map T ∈ T (µ,ν) satisfying

dν

dνd
(T (x)) = h

(
dµ

dµd
(x)

)
, x ∈X.

In the above proposition, we have picked the d-th entry µd, νd to evaluate the Radon–
Nikodym derivatives. One could as well use µj , νj for any 1 6 j 6 d, or even µ̄, ν̄. When
applying this result, we have in mind that the last entry of µ,ν will be given by the altern-
ative and the rest by the null, which makes it convenient to evaluate the Radon–Nikodym
derivatives using the d-th entry.

Finally, we recall the following basic fact on Radon–Nikodym derivatives.

LEMMA 2.5. Let d ∈ N and τ be a probability measure supported on Rd+ with mean 1.
Then there exist probability measures F1, . . . , Fd supported on [0,1] such that(

dF1

dU1
, . . . ,

dFd
dU1

)∣∣∣
U1

= τ.

PROOF. Since U1 is atomless, T (U1, τ) 6= ∅.3 Pick (f1, . . . , fd) ∈ T (U1, τ), and define
Fi by dFi/dU1 = fi for 1 6 i 6 d. This is well-defined since fi is nonnegative a.e. and
EU1 [fi] = 1 for each 1 6 i6 d.

3. Composite null and simple alternative. In this section, we characterize the exist-
ence of exact and pivotal p-variables and e-variables for composite null and simple alternat-
ive (singleton). Although our results in this case are covered by the more general result for
composite alternatives treated in Section 6, studying this setting first helps with building in-
tuition behind our proof techniques. Moreover, the concept of e-power studied in Section 4 is

3It is a standard fact in optimal transport that a Monge transport map from µ to ν exists if µ is atomless.
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defined for a single Q in the alternative hypothesis. We fix P = {P1, . . . , PL} and Q= {Q}
in Π(X) and will assume that

(P,Q) is jointly atomless,(JA)

unless otherwise stated. The main results are Theorems 3.1 and 3.4 below. When

P1, . . . , PL�Q(AC)

holds, we define the measure γ = (dP1/dQ, . . . ,dPL/dQ)|Q on RL.

THEOREM 3.1. Suppose that we are testing P = {P1, . . . , PL} against Q = {Q} and
(JA) holds. The following are equivalent:

(a) there exists an exact (hence pivotal) and nontrivial p-variable;
(b) there exists a pivotal, exact, bounded e-variable that has nontrivial e-power against Q;
(c) there exists an exact e-variable that is nontrivial against Q;
(d) there exists a random variable X that is pivotal for P but has a different distribution

under Q, where the laws of X under both are atomless;
(e) it holds that Q 6∈ Span(P1, . . . , PL).

To prove Theorem 3.1 we need the following preparation.

LEMMA 3.2. Suppose thatQ 6∈ Span(P1, . . . , PL) and (AC) holds. There exists a disjoint
collection of closed balls B1, . . . ,Bk in RL of positive measure (under γ) not containing 1
such that denoting by tj the point of Bj closest to 1, we have 1 ∈Conv({t1, . . . , tk})◦.

PROOF. Since Q 6∈ Span(P1, . . . , PL), the measure γ cannot have support contained in
a hyperplane in RL by definition. In other words, aff suppγ = RL. By Lemma F.1(ii),
1 = bary(γ) ∈ (Conv suppγ)◦. Therefore, there exist s1, . . . , sk ∈ suppγ such that 1 ∈
(Conv{s1, . . . , sk})◦. Let Bj be the ball centered at sj with radius r > 0 for 1 6 j 6 k. For
r small enough, these balls will be disjoint from 1, and the closest points t1, . . . , tk satisfy
1 ∈Conv({t1, . . . , tk})◦.

PROPOSITION 3.3. We have Q 6∈ Span(P1, . . . , PL) if and only if there exist probability
measures G 6= F such that

K((P1, . . . , PL,Q), (F, . . . ,F,G)) 6= ∅.

If moreover (JA) holds, then Q 6∈ Span(P1, . . . , PL) if and only if there exist probability
measures G 6= F such that

T ((P1, . . . , PL,Q), (F, . . . ,F,G)) 6= ∅.

In addition, in both cases above, we may pick F = U1 and G atomless.

PROOF. The “if” is clear sinceQ ∈ Span(P1, . . . , PL) would implyG ∈ Span(F ) = {F}.
For “only if”, let F = U1 and consider first the case where (AC) holds. Then using Proposi-
tion 2.3 with d= L+ 1, it suffices to prove that there exists some G� F such that(

dP1

dQ
, . . . ,

dPL
dQ

,
dQ

dQ

)∣∣∣
Q
�cx

(
dF

dG
, . . . ,

dF

dG
,
dG

dG

)∣∣∣
G
.

Equivalently, we need to show that

(2) γ =

(
dP1

dQ
, . . . ,

dPL
dQ

)∣∣∣
Q
�cx

(
dF

dG
, . . . ,

dF

dG

)∣∣∣
G
.
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We will first consider a special type of density dF/dG which allows us to construct G
such that (2) holds. Suppose that

dG

dF
(x) =


1 if 0 6 x6 1− ε;
1 + ε if 1− ε < x6 1− ε

2 ;

1− ε if 1− ε
2 < x6 1,

where ε > 0 is a small number. Clearly, G is atomless. Moreover, (dF/dG)|G is con-
centrated on [(1 + ε)−1, (1 − ε)−1] and PG[dF/dG = 1] = 1 − ε. Therefore, the meas-
ure (dF/dG, . . . ,dF/dG)|G is supported on the line segment {x ∈ RL | x1 = · · · = xL ∈
[(1 + ε)−1, (1 − ε)−1]}, with mean 1 and PG[dF/dG 6= 1] = ε. We will find a measure
(dF/dG, . . . ,dF/dG)|G that satisfies the condition above and also (2).

Consider a disjoint collection of closed balls {Bj}16j6k in RL as constructed in
Lemma 3.2. By Lemma F.2, there is δ > 0 and a segment {x ∈ RL | x1 = · · · = xL ∈
[1 − δ,1 + δ]} containing 1, such that any measure of total mass δ supported on it will
be smaller in extended convex order than some γ̃ such that γ̃ 6 γ|⋃k

j=1Bj
. We choose ε > 0

so that (1 − ε)−1 < 1 + δ. As a result, the measure G constructed in the above paragraph
satisfies

ω :=

((
dF

dG
, . . . ,

dF

dG

)
|G
)∣∣∣

RL\{1}
�cx γ̃.

The measure (dF/dG, . . . ,dF/dG)|G − ω is concentrated at 1, which is smaller in con-
vex order than any measure with barycenter 1 and the same total mass. Since bary(γ) =
bary(γ̃) = 1, we conclude (

dF

dG
, . . . ,

dF

dG

)∣∣∣
G
�cx γ.

If (AC) does not hold, then we define Q′ =Q/2 + (P1 + · · ·+ PL)/(2L), and repeat the
above arguments, so that there is κ sending (P1, . . . , PL,Q

′) to some (F, . . . ,F,G′) where
G′ 6= F . By linearity, κ also sends (P1, . . . , PL,Q) to (F, . . . ,F,G) where G = 2G′ − F 6=
F .

PROOF OF THEOREM 3.1. The direction (a)⇒(b) is proved as Proposition A.5, (b)⇒(c)
is clear from definition, (c)⇒(e) is proved as Proposition A.6, and (e)⇒(d) is Proposition 3.3.
To show (d)⇒(a), let X be a random variable that has a common law F under P ∈ P , and
law G under Q. Let φ be given in Lemma F.3. It follows immediately that φ ◦X is an exact
p-variable.

THEOREM 3.4. Suppose that we are testing P = {P1, . . . , PL} against Q = {Q} and
(JA) holds. The following are equivalent:

(a) there exists a nontrivial p-variable;
(b) there exists a bounded e-variable that has nontrivial e-power against Q;
(c) there exists an e-variable that is nontrivial for Q;
(d) it holds that Q 6∈Conv(P1, . . . , PL).

REMARK 3.5. The directions (c)⇔(e) in Theorem 3.1 and (c)⇔(d) in Theorem 3.4 also
hold without (JA), in view of Proposition A.7.

EXAMPLE 3.6. (i) Let P1
law∼ Ber(0.1), P2

law∼ Ber(0.2), and Q law∼ Ber(0.3). It follows
that Q ∈ Span(P1, P2) \Conv(P1, P2). By Theorems 3.1 and 3.4, a nontrivial e-variable
(or p-variable) exists, but an exact nontrivial e-variable (or p-variable) does not exist.
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(ii) Let P1
law∼ N(−1,1), P2

law∼ N(1,1), and Q law∼ N(0,1). By Theorem 3.1, there exists a
pivotal exact nontrivial e-variable (or p-variable).

REMARK 3.7. When the sample space X is finite (say |X| = d) and Q 6∈ SpanP , it is
easy to construct nontrivial exact e-variables. We can associate the distributions with their
Radon–Nikodym derivatives, which are just d-dimensional vectors, and one can consider an
e-variable of the form 1 + Y where Y is proportional to the orthogonal part of Q relative to
the span of P (so that Y integrates to zero under any P ∈ P , but has positive expectation
under Q). In case P = {P}, taking P as the reference measure, this construction yields Y =
α(dQ/dP − 1) for any α ∈ [0,1], and the e-variable is precisely dQ/dP when α = 1. For
infinite X, such a direct construction exploiting orthogonality is no longer possible because
the Radon–Nikodym derivatives do not live in a Hilbert space.

Next, Section 4 constructs a powerful exact e-variable by additionally imposing pivotality.

4. Constructing a powerful exact e-variable. We focus on e-variables in this section.
Provided the existence, our next step is to maximize the e-power of an e-variable that is
pivotal and exact. The e-power of an e-variable X can be measured by EQ[logX], which
has long been a popular criterion; see for example Kelly (1956); Breiman (1961); Bell and
Cover (1988); Shafer et al. (2011); Grünwald, de Heide and Koolen (2024); Waudby-Smith
and Ramdas (2024).4 It has been recently called the e-power of X (Vovk and Wang (2024)),
a term we continue to use for simplicity. In this section, we will fix P = {P1, . . . , PL} and
Q= {Q}. Our goal is to solve

max EQ[logX],

s.t. X : X is a pivotal exact e-variable.
(3)

This optimization problem turns out to be a special case of a more general problem that is
illustrated by (8) below. Such a connection will be explained in Section 4.1. We describe an
equivalent condition for the existence of a maximal element for (8) in Section 4.2. A further
sufficient condition in the case L= 2 is illustrated in Section 4.3. Section 4.4 contains a few
discussions regarding batching multiple data points and how it affects the e-power. Finally,
we provide several examples in Section 4.5. In this section, we let

(4) γ :=
(dP1

dQ
, . . . ,

dPL
dQ

)∣∣∣
Q
.

In particular, γ is a probability measure on RL+ with mean 1.

4.1. E-power maximization and convex order. We first recall the maximizer of e-power
in the case of a simple null versus a simple alternative, which has an explicit form. This fact
is used frequently in the above literature.

EXAMPLE 4.1. Let us first illustrate an example with simple null P = {P} (L= 1) and
simple alternative Q= {Q}. Clearly, any e-variable is pivotal. Thus (3) reduces to

max EQ[logX],

s.t. X : X > 0, EP [X] = 1.
(5)

4In short, it captures the rate of growth of the test martingale under the alternative Q; see Section 7.
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By Gibbs’ inequality, the maximum value is attained by the likelihood ratio, i.e., when X =
dQ/dP (see Shafer (2021) for this simple setting).

Below we illustrate the solution to (5) using our theory, which sheds light on the composite
null case. For simplicity, we assume (JA) and (AC). Denote by γ := (dP/dQ)|Q. Consider
the setMγ of probability measures µ such that µ�cx γ:

Mγ := {µ ∈Π(R) : µ�cx γ}
Using Lemma 2.5, every µ ∈ Mγ (in fact also for µ 6∈ Mγ) corresponds to a probab-
ility measure F such that (dF/dU1)|U1

= µ. By Proposition 2.3, there exists a random
variable Y that has law F under P and law U1 under Q. Next, consider X of the form
X = (dU1/dF )(Y ), and we optimize EQ[logX] over F satisfying (dF/dU1)|U1

∈Mγ . It
is clear that the constraint

EP [X] = EP
[dU1

dF
(Y )
]

= EF
[dU1

dF

]
= 1

is satisfied, and the objective in (5) becomes

EQ[logX] = EQ
[

log
(dU1

dF
(Y )
)]

= EU1

[
log

dU1

dF

]
= EU1

[
− log

dF

dU1

]
.

We have thus arrived at the optimization problem

max EU1

[
− log

dF

dU1

]
,

s.t. F ∈Π(R) : F �U1,
dF

dU1

∣∣∣
U1

∈Mγ .

(6)

The value (6) gives a lower bound on (5). Since the set Mγ has a maximum element γ in
convex order, the problem (6) has a trivial solution EQ[− log(dP/dQ)]. This corresponds to
the solution to (5) using Gibbs’ inequality.

The fact that the two values (5) and (6) are the same is not a coincidence and holds more
generally for composite nulls, which we will prove in Theorem 4.2. With a composite null,
the main difficulty arises from solving (6), because the setMγ has a complicated structure,
and may not contain a maximum element in convex order.

As explained in Example 4.1, the first step to solving (3) is to impose the further condition
that X is of the form (dG/dF )(Y ) for some F,G,Y . As a consequence of Gibbs’ inequality,
this does not affect the optimal value of (3), as shown in the following result.

THEOREM 4.2. Assume (JA) and (AC). There exists a maximizer X to (3) of the form
X = (dG/dF )(Y ), where F,G ∈Π(R), and Y ∈ T ((P1, . . . , PL,Q), (F, . . . ,F,G)).

The fact that the log-optimal pivotal and exact e-variable is a likelihood ratio is quite
aesthetically appealing, a phenomenon that is known to be true without the restrictions of
pivotality and exactness (Grünwald, de Heide and Koolen, 2024; Larsson, Ramdas and Ruf,
2024), but in this more general case F could be a sub-probability distribution.

Given X = (dG/dF )(Y ) where Y ∈ T ((P1, . . . , PL,Q), (F, . . . ,F,G)), we may rewrite

EQ[logX] = EQ
[

log
(dG

dF
(Y )
)]

= EG
[
− log

dF

dG

]
.

As a consequence of Proposition 2.3, the optimization problem (3) is equivalent to finding

max EG
[
− log

dF

dG

]
,

s.t. F,G ∈Π(R) :

(
dF

dG
, . . . ,

dF

dG

)∣∣∣
G
�cx

(
dP1

dQ
, . . . ,

dPL
dQ

)∣∣∣
Q
.

(7)



4.2 Existence of the maximum element in convex order 13

More generally, since x 7→ − logx is convex on its domain, we may formulate the problem
of optimizing EG[φ(dF/dG)] for all convex function φ : R+→R. In other words, let γ be the
law of (dP1/dQ, . . . ,dPL/dQ) under Q and introduce the setMγ of probability measures
supported on I+

L that is smaller than γ in convex order, and our goal is to

max µ in �cx,

s.t. µ ∈Mγ .
(8)

This will be the goal of the present section. The reader should keep in mind that unfortunately,
even if (8) allows a unique maximum element, it does not necessarily solve (3) uniquely when
the logarithm in (3) is replaced by other concave functions. This is because Theorem 4.2
requires Gibbs’ inequality, where the logarithm plays a crucial role.

4.2. Existence of the maximum element in convex order. To ease our presentation, we
will assume further that

γ from (4) does not give positive mass to any hyperplane in RL.(N)

That is, for every half-space H ⊆ RL, γ(∂H) = 0. This is a technical assumption which
greatly simplifies our proofs (as we will explain in Remarks 4.6 and 4.8), and we expect that
analogous results hold without such an assumption.

PROPOSITION 4.3. Let γ be a probability measure on RL+ with mean 1. Consider x> 0.
There exists a closed half-space Hx of RL and a measure µx supported on Hx, such that

(i) the positive diagonal I+
L 6⊆Hx;

(ii) −1 ∈Hx;
(iii) x1 ∈ ∂Hx = Hx ∩Hc

x, where Hc
x is the closed complement of Hx;

(iv) the measure µHcx := γ−µx is supported on Hc
x, and the barycenters of µx and µHcx both

lie on I+.

In this case, we call ∂Hx a separating hyperplane at x. Moreover, if (N) holds, there exists a
unique measure µx satisfying the above conditions, in which case it also holds that µx = γ|Hx
and µHcx = γ|Hcx .

We remark that if γ has a strictly positive density on RL+, then the above Hx is unique.
Recall from (8) that our goal is to find the maximum element inMγ in convex order.

THEOREM 4.4. Assuming (N), the following are equivalent.

(a) There exists a unique maximum element µ in convex order inMγ , i.e., µ�cx γ and for
each ν supported on I+ with ν �cx γ, it holds that ν �cx µ.

(b) The class of measures {µx}x>0 from Proposition 4.3 is monotone (in the usual order),
i.e., for all x6 y, µx 6 µy .

EXAMPLE 4.5. Suppose that L = 1. It is clear from the proof of Proposition 4.3 that
condition (b) in Theorem 4.4 is always satisfied. Therefore, the maximum element µ inMγ

always exists. This agrees with Example 4.1, where the likelihood ratio maximizes the e-
power.

REMARK 4.6. The only place we used our assumption (N) is on the uniqueness of the
measure µx in Proposition 4.3. When there is no uniqueness, the condition (b) in Theorem 4.4
needs to be replaced by the existence of a monotone selection of measures {µx}x>0, each of
them satisfying the conditions in Proposition 4.3.
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(1,1)

suppγ

Γ

suppµ

Figure 2: Illustration of Theorem 4.7. The convex set Γ is enclosed by the red contour ∂Γ on
which γ (the law of (dP1/dQ,dP2/dQ) under Q) is supported. The measure µ is supported
on the thick segment on the diagonal I .

The condition (b) in Theorem 4.4 is in general not easy to check, especially in higher
dimensions.5 Later, we supply a sufficient condition in Section 4.3, and a few examples in
Section 4.5.

4.3. A sufficient condition in case |P| = 2. When L = 2, we provide a sufficient con-
dition for the class of measures {µx}x>0 to satisfy the monotonicity condition x 6 y =⇒
µx 6 µy . In view of Theorem 4.4, this condition implies the existence of the maximum ele-
ment µ. We keep the same setting as in Section 4.2 and assume (N), with the exception that
L= 2.

THEOREM 4.7. Assume (N), (JA), (AC). Suppose that there exists a convex set Γ ⊆ R2

such that γ(∂Γ) = 1.6 Then there exists a unique maximum element µ in convex order inMγ .
Moreover, µ is the unique probability measure on the I+

2 with µ([0, x]2) = µx(R2), where µx
was given in Proposition 4.3 applied with L= 2. In particular, there exist distinct measures
F,G ∈Π(R) such that (dF/dG,dF/dG)|G = µ, attaining the maximum in (7).

REMARK 4.8. With essentially the same arguments, we may remove assumption (N)
from Theorem 4.7. With the presence of atoms, selecting any monotone collection {µx}x>0

would be enough; see Remark 4.6.

4.4. On multiple observations. Before we proceed, let us discuss the case with multiple
data points. Suppose that instead of one data point, we observe n iid data points Z1, . . . ,Zn in
the space X from the experiment. The e-variable is built based on the n data points together
instead of a single data point. In other words, given P = {P1, . . . , PL} and Q = {Q}, we
build an e-variable for Pn := {Pn1 , . . . , PnL} that is pivotal, exact, and has nontrivial e-power
against Qn := {Qn}. We first see that, as long as Q 6∈ P and P is linearly independent,
at most two observations are needed to build a pivotal and exact e-variable based on The-
orem 3.1. Furthermore, without linear independence of P , a finite number of observations
would suffice when the underlying space X is Euclidean.

5In this paper when we mention “dimension” we typically refer to the dimension of the null, but not the
dimension of the underlying space X.

6This assumption is far from being necessary, but might be convenient to verify.
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THEOREM 4.9. Suppose that X is an Euclidean space and P1, . . . , PL are distinct prob-
ability measures on X. If Q ∈Π(X) satisfies Q 6∈ P = {P1, . . . , PL}, then there exists k > 1
such that Qk 6∈ SpanPk (and in particular Qk 6∈ConvPk). Moreover, if we also assume that
Q satisfies (AC) and that P1, . . . , PL are linearly independent, then either Q 6∈ SpanP or
Q2 6∈ SpanP2 (or both); in particular, either Q 6∈ConvP or Q2 6∈ConvP2 (or both).

In the last claim above, one can show that neither the linear independence condition nor
(AC) can be removed. The proof of Theorem 4.9 is put in Appendix C, which relies on the
following fundamental fact: If X is an Euclidean space and P1, . . . , PL are distinct probability
measures on X, then there exists k > 1 (possibly large) such that P k1 , . . . , P

k
L are linearly

independent. This fact may be known, but we are not aware of a proof in the literature, and
we present it as Lemma C.3 in Appendix C. The weaker statement that there exists k for
which Qk 6∈ConvPk also follows from Lemma 2 of Berger (1951).

EXAMPLE 4.10. Suppose that P1
law∼ Ber(0.1), P2

law∼ Ber(0.2), and Q
law∼ Ber(0.3).

We explained in Example 3.6 that an exact nontrivial e-variable does not exist. Nevertheless,
Theorem 4.9 implies that Q2 6∈ Span(P 2

1 , P
2
2 ), and hence an exact and nontrivial e-variable

exists for a batch of two data points. An example of such an e-variable X is given by

X(ω)≈


1.009 for ω = (0,0);

0.939 for ω = (0,1), (1,0);

1.338 for ω = (1,1).

Let us denote by `n the maximum e-power with n data points for Pn against Qn using a
pivotal and exact e-variable, similarly as in (3).

PROPOSITION 4.11. In the setting above, suppose that (AC) and (JA) hold, and Q 6∈
P = {P1, . . . , PL}. For any n,m ∈ N, `n+m > `n + `m. In particular, `n/n converges to a
positive limit less than or equal to minP∈P EQ[log(dQ/dP )].

The above proposition formalizes the straightforward observation that constructing an e-
value using m+n points is potentially more powerful than multiplying two e-values together
that were constructed separately using m and n points respectively.

Is there a loss of e-power caused by imposing exactness or pivotality? The superaddit-
ivity property established in Proposition 4.11 implies in particular that `2n/2n is increasing
in n. The intuitive reason of the increase in the average e-power is partly due to the fact that
the pivotality constraint becomes less restrictive for a higher number of observations. To see
this, imagine laws P ∈ P with a complicated entangled overlapping structure. To achieve
pivotality, we need to send all laws P simultaneously to a single distribution F , the ways
of which may be quite limited due to the overlapping structure.7 On the other hand, with
multiple observations, the laws Pn, P ∈ P have much fewer overlapping parts than P ∈ P
do (for instance, P∞, P ∈ P are mutually singular), meaning that there are more ways to
achieve pivotality.

It remains an open question whether `n/n→ minP∈P EQ[log(dQ/dP )]. Note that this
conjectural limit can be different from minP∈ConvP EQ[log(dQ/dP )] because the linearity
structure is lost after taking powers. If the above question is answered in the affirmative,

7For instance, if P ∈ P all have disjoint support (no overlap), the transport map can be picked independently
on the disjoint supports to send P to F , but this is not possible of P ∈ P all have the same support.
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then the loss of e-power vanishes asymptotically, by noting that nminP∈P EQ[log(dQ/dP )]
is an upper bound on the theoretical best e-power for testing Pn against Qn (see Ex-
ample 4.1). In Example 4.13, we present a setting of Gaussian distributions in which
`n/n→ minP∈P EQ[log(dQ/dP )] holds true. We conjecture that this limit holds true in
general, but we did not find a proof.8

4.5. Examples. The condition in Theorem 4.7 that γ = (dP1/dQ,dP2/dQ)|Q is sup-
ported on the boundary of a convex set is not very restrictive. When P1, P2,Q ∈ Π(R), the
vector of density functions ((dP1/dQ)(x), (dP2/dQ)(x)) forms a parameterized curve in
R2 by x ∈ R. In certain nice cases, such a curve lies on the boundary of a convex set. We
illustrate with a few examples below.

EXAMPLE 4.12. Consider P1
law∼ N(−1,1), P2

law∼ N(1,1), and Q law∼ N(0,1). It follows
from a direct computation that

γ =

(
dP1

dQ
,
dP2

dQ

)∣∣∣
Q

=
(
e−ξ−1/2, eξ−1/2

)∣∣∣
ξ
law∼N(0,1)

,

which is supported on the hyperbola {(x1, x2) ∈ R2
+ | x1x2 = 1/e}, the boundary of the

convex set {(x1, x2) ∈ R2
+ | x1x2 > 1/e}. By Theorem 4.7, there exists a unique maximal

element µ inMγ in convex order.
Using the notation from Proposition 4.3, it is easy to see that Hx = {(x1, x2) ∈ R2 | x1 +

x2 6 2x} and µx = γ|Hx . Moreover, Theorem 4.7 yields that µ is the unique probability
measure on I+ with

µ([0, x]2) = 2Φ
(

log(
√
ex+

√
ex2 − 1)

)
− 1 for x>

1√
e
,(9)

where Φ is the Gaussian cumulative density function. It can be directly seen from the
figure below that points x, y ∈ R are shrunk to a single point precisely when the points
(ex−1/2, e−x−1/2) and (ey−1/2, e−y−1/2) are symmetric around I . This happens if and only
if x=−y. In other words, the most powerful pivotal e-variable is a function of |Z|, where Z

is the observed data point. Using Example 4.1 on testing the simple hypothesis |Z| law∼ |ξ+ 1|
against |Z| law∼ |ξ|, this e-variable is given by X = 2e1/2/(eZ + e−Z) = e1/2 cosh(Z)−1, and
the e-power is EQ[logX]≈ 0.125. In the sequential setting where iid observations Z1, . . . ,Zn
are available (treated in the next example), we effectively reduce the filtration generated by
Z1, . . . ,Zn to the one generated by |Z1|, . . . , |Zn|. This corresponds to the intuition that tak-
ing absolute value transports P1, P2 to the same measure but not for Q, and indeed this is the
optimal solution to (7).

EXAMPLE 4.13. We consider the setting in Example 4.12 but instead of one data point,
we observe n iid data points Z1, . . . ,Zn in the experiment. Here, we build an e-variable based
on the n data points together instead of building an e-variable for each data point; this allows
for more flexibility than Example 4.12. In this setting, P1 = N(−1n, In), P2 = N(1n, In),

8The argument in Example 4.13 is analytical. On the other hand, numerical verification of this conjecture re-
mains a challenging task due to drastic extremal values of the Radon–Nikodym derivatives (in high dimensions,
almost all mass of (dPn/dQn)|Qn concentrates near 0 or∞), exponential time complexity, and the slow con-
vergence of `n/n. We leave it as an open problem to design a more efficient iterative algorithm for this problem
(or more generally, computing numerically the best e-power in high dimensions), or to prove that one cannot exist.
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Figure 3: An illustration of Example 4.12: γ is supported on the hyperbola x1x2 = e−1, the
optimal µ is supported on the red ray. Dashed arrows indicate the reduction of filtration.

and Q= N(0n, In), where 1n = (1, . . . ,1) ∈ Rn, 0n = (0, . . . ,0) ∈ Rn, and In is the n× n
identity matrix. It follows from a direct computation that

γ =

(
dP1

dQ
,
dP2

dQ

)∣∣∣
Q

=
(
e−ξ−n/2, eξ−n/2

)∣∣∣
ξ
law∼N(0,n)

,

which is very similar to Example 4.12. Using a similar argument as in Example 4.12, the
most powerful pivotal e-variable is given by En = en/2 cosh(

∑n
i=1Zi)

−1. Note that this is
different from the sequential one built in Example 4.12 which isE∗n = en/2

∏n
i=1 cosh(Zi)

−1.
The contrast between En and E∗n is interesting to discuss. On the one hand, En has better
e-power than E∗n since En >E∗n due to the log-convexity of the cosh function. This is intu-
itive, as E∗n effectively tests more null hypotheses such as N(µ, In) for µ ∈ {−1,1}n than
En. On the other hand, n 7→ E∗n is a martingale under both P1 and P2, but we can check
that n 7→ En is not a martingale under either P1 or P2. In Section 5, we will compare the
e-power of the two approaches numerically, and in Section 7, we further discuss test martin-
gales. Finally, we note that `n/n = EQ[logEn]/n→ 1/2 = mini=1,2 EQ[log(dQ/dPi)]/n,
and hence the upper bound in Proposition 4.11 is sharp. On the other hand, EQ[logE∗n]/n=
1/2−EQ[log cosh(Z1)]≈ 0.125.

EXAMPLE 4.14. Let us examine some further sufficient conditions with L= 2. Consider
P1, P2,Q ∈ Π(R) such that P1, P2 � Q and dPi/dQ ∈ C2(R) for i = 1,2. Recall that a
simple C2 parameterized curve (x(t), y(t)) in R2 lies on the boundary of a convex set if and
only if its curvature

k =
x′y′′ − y′x′′

((x′)2 + (y′)2)3/2

is always nonnegative or always nonpositive (Theorem 2.31 of Kühnel (2015)). Therefore,
(dP1/dQ,dP2/dQ) lies on the boundary of a convex set if(dP1

dQ

)′(dP2

dQ

)′′
−
(dP1

dQ

)′′(dP2

dQ

)′
remains of a constant sign. As a simple example, this is the case if P1, P2,Q are Gaussian
distributions on R with different means but the same variance, or with the same mean but
different variances. In particular, this recovers Example 4.12.
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More generally, suppose that P1, P2,Q have densities p1, p2, q ∈C2(R) where q is strictly
positive, and denote by W (f1, . . . , fn) the Wronskian of f1, . . . , fn. Then we have the further
sufficient condition that

W
(
(p1/q)

′, (p2/q)
′) 6= 0 everywhere,

or equivalently, W (p1, p2, q)(x) 6= 0 for all x ∈ R. By the Abel-Liouville identity (Teschl
(2012)), this is the case if p1, p2, q form a fundamental system of solutions of the ODE

y(3) = a2(x)y(2) + a1(x)y(1) + a0(x)y

for some continuous functions ai : R→R, 0 6 i6 2.

In higher dimensions with more than two nulls, Theorem 4.7 is often not applicable. Nev-
ertheless, given enough symmetry, we may directly compute {µx} from Theorem 4.4 and
prove that they are monotone. Surprisingly, many intuitively straightforward tests are subop-
timal.

EXAMPLE 4.15. Consider probability measures P1
law∼ N((0,1), I), P2

law∼
N((−

√
3/2,−1/2), I), P3

law∼ N((
√

3/2,−1/2), I), and Q
law∼ N((0,0), I). Note that

Theorem 4.7 is not directly applicable here. It is natural to guess from Example 4.12 that the
optimal solution is the Euclidean norm, i.e., the distance from 0 in R2. On the contrary, we
show this is not the case. A routine computation gives that

γ =

(
dP1

dQ
,
dP2

dQ
,
dP3

dQ

)∣∣∣
Q

=
(
eξ1−1/2, e(−ξ1−

√
3ξ2−1)/2, e(−ξ1+

√
3ξ2−1)/2

)∣∣∣
ξ1,ξ2

law∼N((0,0),I) independent
.

Note that this forms an exchangeable random vector and that the support of γ is con-
tained in {(x, y, z) ∈ R3

+ | xyz = e−3/2}. By symmetry and exchangeability, the unique
optimal solution shrinks the set Ra := {(x, y, z) | x + y + z = a,xyz = e−3/2} into a
single point in R3 for every a > 0. For (ξ1, ξ2) ∈ R2, the Radon–Nikodym derivative
(dP1/dQ,dP2/dQ,dP3/dQ)(ξ1, ξ2) ∈Ra if and only if

h(ξ1, ξ2) := eξ1 + e(−ξ1−
√

3ξ2)/2 + e(−ξ1+
√

3ξ2)/2 =
√
ea.(10)

In other words, we reduce the filtration generated by the sequence of observations Z1, . . . ,Zn
to the one generated by h(Z1), . . . , h(Zn). It is clear that (10) does not agree with ξ2

1 +
ξ2

2 = a′ for any a′ ∈ R, so taking the Euclidean distance from 0 instead of h is suboptimal.
Using a general technique of constructing the most powerful e-variable in Section 5.2 below,
one can show that the e-variable takes the form X = 3(eZ

(1)−1/2 + e(−Z(1)−
√

3Z(2)−1)/2 +

e(−Z(1)+
√

3Z(2)−1)/2)−1 = 3
√
eh(Z)−1, where Z = (Z(1),Z(2)) forms a single observation.

This example also generalizes to more than three nulls (Gaussian with the same variance)
whose means form a regular polygon centered at 0.

Finally, we supply the following two examples illustrating an explicit calculation of
{µx}x>0 with the presence of atoms in γ. The following example also shows that without
pivotality, the maximum value of (3) increases.

EXAMPLE 4.16. Let a, b, c, d ∈ (0,1) such that max(a+c, b+d)< 1. On the probability
space Ω = [0,3], we define measures P1, P2,Q where

(i) P1 has density a1[0,1] + c1[1,2] + (1− a− c)1[2,3];
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(ii) P2 has density b1[0,1] + d1[1,2] + (1− b− d)1[2,3];
(iii) Q is uniformly distributed.

It is clear that P1, P2 � Q and (P1, P2,Q) is jointly atomless. The measure γ =
(dP1/dQ,dP2/dQ)|Q has the form

γ =
1

3

(
δ(3a,3b) + δ(3c,3d) + δ(3(1−a−c),3(1−b−d))

)
.

Note that assumption (N) is not satisfied. In the following, we specify the choices
of a = 0.2, b = 0.3, c = 0.5, d = 0.6. The triangle connecting the points
(0.6,0.9), (1.5,1.8), (0.9,0.3) intersects with I+ at the points (0.7,0.7) and (1.3,1.3). Note
that the measures

1

3
δ(3a,3b) +

1

6
δ(3(1−a−c),3(1−b−d)) and

1

3
δ(3c,3d) +

1

6
δ(3(1−a−c),3(1−b−d))

have barycenters equal to (0.7,0.7) and (1.3,1.3) respectively. In particular, we may pick

µx =


0 for x < 0.7;
1
3δ(3a,3b) + 1

6δ(3(1−a−c),3(1−b−d)) for 0.7 6 x < 1.3;

γ otherwise.

so that {µx}x>0 is monotone and satisfies the four conditions in Proposition 4.3.
In view of Theorem 4.7 and Remark 4.8, the maximum is attained in (7) and hence in

(3), by the choice X(ω) = (10/7)1{ω∈[0,1]∪[2,2.5]} + (10/13)1{ω∈[1,2]∪[2.5,3]}.9 The optimal
value is ≈ 0.047. On the other hand, if we remove the constraint that X is pivotal, then
with X ≈ 1.63δ[0,1] + 0.66δ[1,2] + 1.15δ[2,3], we have EQ[logX] ≈ 0.07, showing that the
maximum in (3) increases.

In the case where γ is not supported on the boundary of a convex set in R2, the following
example shows that the conclusion of Theorem 4.7 may not hold.

EXAMPLE 4.17. Let γ be a probability measure on R2 centered at 1 that is supported on

{(x, y) | x+ y 6 1} ∪ {(x, y) | x6 y, x6 x0} ∪ [1,∞)2,

where x0 ≈ 0.903 is the unique real solution to 8x3 = 6x2 + 1. Assume that dγ/d(U1 ⊗
U1) = 1 on the set {(x, y) | x+ y 6 1} ∪ {(x, y) | x 6 y, x 6 x0}. A routine computation
shows that the separating hyperplanes at x = 1/2, x0 are H1/2 = {(x, y) | y = 1 − x} and
Hx0

= {(x, y) | x = x0}. In particular, µ1/2 6 µx0
does not hold. Theorem 4.4 then implies

that there is no maximum element µ in convex order inMγ .

5. The SHINE construction. The current section develops the SHINE construction
(Separating Hyperplanes Iteration for Nontrivial and Exact e/p-variables), that effectively
produces a pivotal nontrivial exact e/p-variable via separating hyperplanes (see Proposi-
tion 4.3, which is the key to our construction). Unless otherwise stated, we follow the setup
of Section 4.

The first goal of the SHINE construction is to solve the optimization problem (8). In the
case where the condition in Theorem 4.4 is satisfied, the construction outputs the maximum
element. When the maximum element µ does not exist or when the condition (b) in The-
orem 4.4 is hard to check, we provide a reasonable maximal element µ in convex order. In
the second part of the SHINE construction, we recover the corresponding e/p-variable from
the output µ in the first part. The two parts are respectively illustrated in Sections 5.1 and 5.2.
We end this section by providing examples and simulation results in Section 5.4.

9The way that X is obtained will be explained in detail in Section 5.2 below.
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5.1. Description of the SHINE construction. Start with µ(0) = δ1, x(0)
1 = 1, and µ(0)

1 = γ

from (4). At step s> 0, we are given µ(s), {x(s)
k }16k62s , and {µ(s)

k }16k62s . For each k, we
apply Proposition 4.3 to the sub-probability measure µ(s)

k at the point x(s)
k . This yields a

unique decomposition of µ(s)
k into two measures, each having a barycenter on I+. Denote

them by µ
(s+1)
2k−1 and µ

(s+1)
2k . For 1 6 k 6 2s+1, define x(s+1)

k = bary(µ
(s+1)
k ). Finally, let

µ(s+1) be the probability measure having mass µ(s+1)
k (RL) on x(s+1)

k for every k, i.e.,

µ(s+1) :=

2s+1∑
k=1

µ
(s+1)
k (RL)δx(s+1)

k
.(11)

The output of the SHINE construction at step s is the measure µ(s).
It is easy to see that each µ(s) is centered at 1 and supported on I+. Moreover, µ(s) �cx γ

by Strassen’s theorem because µ(s) is the aggregation of barycenters of different components
in the decomposition of γ. By Markov’s inequality, the sequence {µ(s)} is tight and allows a
weak limit. In fact, an even stronger assertion can be made. Define {Xs} as the coupling of
the first coordinate of {µ(s)} such that X0 = 1 and at each s> 0, for j = 2k− 1,2k,

(12) P
[
Xs+1 = x

(s+1)
j |Xs = x

(s)
k

]
=

µ
(s+1)
j (RL)

µ
(s+1)
2k−1 (RL) + µ

(s+1)
2k (RL)

.

By construction,

x
(s+1)
2k−1 µ

(s+1)
2k−1 (RL) + x

(s+1)
2k µ

(s+1)
2k (RL) = x

(s)
k µ

(s)
k (RL) = x

(s)
k (µ

(s+1)
2k−1 (RL) + µ

(s+1)
2k (RL)).

It can thus be checked by direct calculation that E[Xs+1 |Xs = x
(s)
k ] = x

(s)
k , meaning that

{Xs} forms a nonnegative martingale, and hence converges a.s. to some X∞ by the martin-
gale convergence theorem. We call {Xs} the SHINE martingale (associated with γ). Denote
by µ the law of X∞1 = (X∞, . . . ,X∞). Then µ�cx γ by Lemma 2.1(ii).

REMARK 5.1. The first step of the construction, i.e., after finishing step s = 0, already
contains a proof of Proposition 3.3, because δ1 6= µ(1) �cx γ. Nevertheless, the ideas behind
the original proof of Proposition 3.3 extend to the composite alternative scenario.

EXAMPLE 5.2. Suppose that L= 1, i.e., we have simple null P versus simple alternative
Q, where P ≈Q. In this case, Proposition 4.3 applies trivially: for each s> 0 and 1 6 k 6 2s,
the measure µ(s)

k is decomposed into

µ
(s)
k = µ

(s+1)
2k−1 + µ

(s+1)
2k := µ

(s)
k

∣∣
[0,bary(µ

(s)
k ))

+ µ
(s)
k

∣∣
[bary(µ

(s)
k ),∞)

.

As in (11), this results in a sequence of laws {µ(s)}s>0 on R that are increasing and smaller
than γ in convex order. This is closely related to a martingale decomposition theorem by
Simons (1970): if we denote by {Zs}s>0 the natural martingale coupling of {µ(s)}s>0, then
Zs → Z a.s. for some Z that has law γ. In other words, the e-variable obtained from the
SHINE construction converges to dQ/dP a.s. under both P and Q.

THEOREM 5.3. Assume (JA) and (AC). For any s, we have µ(s) �cx µ
(s+1), and if

µ(s) 6= µ(s+1), then the inequality is strict, meaning that the above SHINE construction makes
progress at each step. Further, assuming (N), it produces a sequence of measures that con-
verges almost surely to a maximal element µ in convex order in Mγ . In this case, if there
exists a maximum element µ0, then the output of our SHINE construction converges to µ0.
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Figure 4: An illustration of the SHINE construction in dimension L = 2. Suppose that the
measure γ is supported on the region enclosed by the red contour, where bary(γ) = (1,1). In
the first step of the SHINE construction, we use Proposition 4.3 to find a line `1 through (1,1)

that partitions γ into two parts µ(1)
1 and µ(1)

2 , each of whose barycenters lies on the diagonal.
In the second step, we find a line `2 through x(1)

1 = bary(µ
(1)
1 ) that partitions µ(1)

1 into two
measures µ(2)

1 and µ(2)
2 , each of whose barycenters lies on the diagonal, and similarly a line

`3. We then proceed iteratively.

When we apply the construction in practice, we need to stop at finitely many steps, so we
will not always obtain an exactly maximal element. Later in Section 5.3, we show that the
e-power from the k-th step in SHINE converges exponentially to the optimal value produced
by SHINE, with a rate that can be made explicit given mild moment conditions.

We note in particular that Lemma D.2 together with Theorem 5.3 yield that the construc-
tion always gives an atomless measure µ in the limit.

With the presence of atoms, the decomposition given by Proposition 4.3 is not necessarily
unique when applied to our construction. The degree of freedom of each µx is the measure
on the hyperplane ∂Hx. To describe a well-defined construction, we need to specify µx|∂Hx
uniquely for each x. Analyzing the maximality of the output remains a technical task, which
we do not discuss in this paper.

5.2. Recovering explicitly an e/p-variable. We aim first to recover our e-variable
X , which we recall from Theorem 4.2 is of the form X = (dG/dF )(Y ), where Y ∈
T ((P1, . . . , PL,Q), (F, . . . ,F,G)) and F,G come from our SHINE construction. We have
seen from (11) and (12) that at the s-th step, our construction leads to a canonical martin-
gale coupling of µ(s) and γ that couples the mass µ(s+1)

k (RL)δx(s+1)
k

with µ(s+1)
k . We denote

the martingale coupling by (Λs,Γs), which is a random vector of dimension 2L. Under as-
sumption (N), we know further that the measures {µ(s)

k }16k62s are mutually singular, and
hence (Λs,Γs) is backward Monge, i.e., in the backward direction we have Λs = h(Γs) for
some h. Since (P1, . . . , PL,Q) is jointly atomless, we may apply Proposition 2.4 to find a
simultaneous transport map Y ∈ T ((P1, . . . , PL,Q), (F, . . . ,F,G)) such that for each x ∈X,

dF

dG
(Y (x))× 1 = h

(
dP1

dQ
(x), . . . ,

dPL
dQ

(x)

)
.

This leads to

(X(x))−1 × 1 = h

(
dP1

dQ
(x), . . . ,

dPL
dQ

(x)

)
, x ∈X.
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For example, the s-th step of the construction gives explicitly

(X(x))−1 × 1 = h(x
(s+1)
k ) if

(
dP1

dQ
(x), . . . ,

dPL
dQ

(x)

)
∈ suppµ

(s+1)
k , x ∈X.(13)

Note that the measures F,G can meanwhile be reconstructed from Lemma 2.5, and further
Lemma F.4(i) if one requires F = U1. In this case, Y is the valid p-variable as desired, which
can be effectively described by the MOT-SOT parity of Wang and Zhang (2023).

EXAMPLE 5.4. Suppose that we are in the setting of Example 4.12, with P1
law∼

N(−1,1), P2
law∼ N(1,1), and Q law∼ N(0,1). Recall that

γ =

(
dP1

dQ
,
dP2

dQ

)∣∣∣
Q

=
(
e−Z−1/2, eZ−1/2

)∣∣∣
Z

law∼N(0,1)
.

By symmetry of γ, it is clear that the separating hyperplanes Hx in the SHINE construction
are given by Hx = {(a, b) : a+ b 6 2x}. In the first step of the construction, we locate the
barycenters of the measures γ|H1

and γ|Hc1 . By direct calculation, we obtain bary(γ|H1
) ≈

0.713×1 and bary(γ|Hc1)≈ 1.743×1. Using (13), the corresponding e-variable has the form

X(x) =

{
1.403 if |x|6 log(

√
e+
√
e− 1);

0.574 if |x|> log(
√
e+
√
e− 1).

The resulting e-power EQ[logX] is approximately 0.089. (One may compare this to the max-
imum e-power 0.12543, which can be directly computed from (9).) In general, we may con-
struct X in multiple steps.

5.3. Convergence rate of SHINE. We complement Theorem 5.3 with the following result
on the convergence rate of the e-power given by the SHINE construction. Recall from (7) that
the e-power is given by EQ[− logXk], where {Xk} is the SHINE martingale.

THEOREM 5.5. Assume the same conditions as in Theorem 5.3. Suppose that there exists
ε > 0 such that

EQ
[(dPj

dQ

)2+ε]
<∞, for some j,(14)

and

EQ
[(dPj′

dQ

)−2]
<∞, for some j′.(15)

Consider the e-power EPk := EQ[− logXk] where {Xk} is the SHINE martingale. Then
there exist r ∈ (0,1) and C > 0 such that

EP∞ −EPk 6Crk,

where EP∞ = E[− logX∞] and Xk→X∞ a.s.

Our result relies on a particular feature of the SHINE martingale {Xk} produced by (12).
Intuitively, the martingale {Xk} has a binary tree representation, and the legs in the tree
never intersect with other legs at all levels. In this way, one gains control of the fluctuations
of the martingale from its values at previous times. The key step to proving Theorem 5.5
is the following convergence rate of the L2 Wasserstein distance. In particular, this expo-
nential convergence applies to the Simons martingale introduced by Simons (1970); see also
Example 5.2.
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LEMMA 5.6. Suppose that the SHINE martingale {Xk}k>0 satisfies E[|X∞|2+ε] <∞
for some ε > 0 where Xk →X∞ a.s. Then there exist r = r(ε) < 1 and a constant C > 0
(where C may depend on ε, the law of |X0 −X1|, and E[|X∞|2+ε]) such that

E[(Xk −X∞)2] 6Crk.

If X is uniformly bounded, one can pick r < 0.827.

Lemma 5.6 immediately implies EP∞ − EPk 6 Crk for some r < 0.827 if dPj/dQ for
each j is bounded above and bounded away from 0. The proofs of Theorem 5.5 and Lemma
5.6 are collected in Appendix D.

5.4. Simulation results. We first consider the setting of Example 4.12, where we recall
that P1

law∼ N(−1,1), P2
law∼ N(1,1), and Q law∼ N(0,1). In Figure 5, we provide two figures

illustrating the e-power at each step in the SHINE construction and the corresponding laws
of the e-variable under P1, P2, and Q. In the left panel, we compute the e-power in two
ways: from the analytic expression (9) and by Monte Carlo simulations. In the Monte Carlo
simulations, we simulate an empirical measure Q(N) of Q and approximate the law γ by
γ(N) = (dP1/dQ,dP2/dQ)|Q(N) . After this, we perform the SHINE construction on γ(N).
The e-powers are reasonably close with only N = 2× 104 samples and converge quickly to
their limits, where it is straightforward to compute from (9) that the theoretical maximum
e-power is approximately 0.12543. In the right panel, we show the distributions of the e-
variable under P1, P2, and Q at step s= 5 of the SHINE construction, again by simulating
2× 104 samples of each distribution. The pivotality of the e-variable implies that the laws
of X under P1 and P2 are the same, while the marginal errors shown by the figure are due
to our Monte Carlo simulation. Note that within finitely many steps, the SHINE construction
always yields a discrete e-variable. With Monte Carlo, our e-variable is approximately pivotal
since the measure γ is atomic thus violating Assumption (N).

(a) growth of the e-power (b) laws of the e-variable X under P1, P2, Q

Figure 5: The SHINE construction for Example 4.12.

In Figure 6, we complement the discussions in Example 4.13 regarding multiple data
points. Recall that P1 = N(−1n, In), P2 = N(1n, In), and Q = N(0n, In), where n ∈ N.
Panel (a) computes the theoretical e-power developed after a number of steps with two data
points (n = 2), which is approximately 0.35775, significantly higher than 0.25086, which
is twice the e-power with a single data point. Panel (b) plots the theoretical e-power at the
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step s = 7 of the SHINE construction, for various numbers of observations n. Observe that
the curve is convex and tends to be linear, reflecting the fact that taking multiple data points
increases the average e-power, while the normalized e-power `n/n converges as shown in
Proposition 4.11.

(a) growth of e-power with two data points (b) e-power versus number of observations n

Figure 6: Maximum e-power with multiple data points for Example 4.13.

The implementation of the SHINE construction in dimensions greater than two has the
obstacle that it is difficult in general to find the separating hyperplanes. We leave this to
future work, as well as generalizations of the SHINE construction when (N) does not hold.

6. Composite null and composite alternative. Our goal in this section is to extend
Theorems 3.1 and 3.4 to composite alternative, i.e., when |P|, |Q|> 1. A full characterization
of the existence of (exact and pivotal) nontrivial p/e-variables is provided in the case where
both P and Q are finite. We also discuss the general case where P,Q are infinite, including
a few open problems.

6.1. Existence of an exact and pivotal p/e-variable for the finite case. We start with the
case where P,Q are both finite. That is, given P = {P1, . . . , PL} and Q = {Q1, . . . ,QM}
such that (JA) holds, we characterize equivalent conditions for the existence of an (exact and)
nontrivial e-variable (or p-variable).

THEOREM 6.1. Assume (JA). Suppose that we are testing P = {P1, . . . , PL} against
Q= {Q1, . . . ,QM}. The following are equivalent:

(a) there exists an exact (hence pivotal) and nontrivial p-variable;
(b) there exists a pivotal, exact, bounded e-variable that has nontrivial e-power against Q;
(c) there exists an exact e-variable that is nontrivial for Q;
(d) there exists a random variable X that is pivotal for P and satisfies F 6∈

Conv(G1, . . . ,GM ), where F is the law of X under every P ∈ P and Gj is the law
of X under Qj for 1 6 j 6M ;

(e) it holds that Span(P1, . . . , PL)∩Conv(Q1, . . . ,QM ) = ∅.

Furthermore, the equivalence of (c) and (e) does not require (JA).

THEOREM 6.2. Assume (JA). Suppose that we are testing P = {P1, . . . , PL} against
Q= {Q1, . . . ,QM}. The following are equivalent:
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(a) there exists a nontrivial p-variable;
(b) there exists a bounded e-variable that has nontrivial e-power against Q;
(c) there exists an e-variable that is nontrivial for Q;
(d) it holds that Conv(P1, . . . , PL)∩Conv(Q1, . . . ,QM ) = ∅.

Furthermore, the equivalence of (c) and (d) does not require (JA) or finiteness of P and Q.

REMARK 6.3. The equivalence of (c) and (d) in Theorem 6.2 is a special case of Kraft’s
theorem, which we recall from (1). Note that here we do not require that P and Q are fi-
nite, but only the existence of a reference measure R dominating P ∪Q. To see that Kraft’s
theorem implies the equivalence of (c) and (d) in Theorem 6.2 in case P or Q is infinite,
suppose that (c) holds. It follows that EQ[X]> 1 > EP [X] for all P ∈ P and Q ∈Q. Kraft’s
theorem implies the existence of some ε > 0 such that dTV(ConvP,ConvQ) > ε, and in
particular, (d) holds. On the other hand, if (d) is true, then Kraft’s theorem yields ε > 0 and
X satisfying (1). A suitable linear transformation Y of X then satisfies EQ[Y ]> 1 > EP [Y ]
for all P ∈ P and Q ∈Q (we may assume Y is positive since X is bounded by construction),
and the rest follows from Proposition A.2.

COROLLARY 6.4. Suppose that we are testing P against Q, where P and Q are convex
polytopes in Π. Denote by {P1, . . . , PL} (resp. {Q1, . . . ,QM}) the vertices of the polytope P
(resp. Q) and assume that (P1, . . . , PL,Q1, . . . ,QM ) is jointly atomless. Precisely the same
conclusions in Theorems 6.1 and 6.2 hold.

PROOF. This follows immediately from Proposition A.1.

COROLLARY 6.5. There exists a (pivotal and exact) e-variable nontrivial for Q if and
only if there exists a (pivotal and exact) e-variable that has nontrivial e-power against Q.

PROOF. This is a direct consequence of Theorems 6.1 and 6.2, and Proposition A.5.

EXAMPLE 6.6. Fix 0 < q1 < q2 < 1 and let P = {Ber(q1)} and Q = {Ber(p) | q2 6
p6 1}. Corollary 6.4 then provides an exact nontrivial e-variable (or p-variable). Neverthe-
less, such an exact nontrivial e-variable (or p-variable) would not exist if we replace P by
{Ber(p) | 0 6 p6 q1}.

Due to the complication of convex order in higher dimensions, it remains a challenging
task how to generalize Theorem 4.7 and the SHINE construction to the composite alternative
case.

6.2. Infinite null and alternative. We first state a weaker version of Theorem 6.1 when
both P and Q may be infinite but allow a common reference measure.

THEOREM 6.7. Assume that there exists a common reference measure R ∈ Π(X) such
that P �R for P ∈ P and Q�R for Q ∈Q. There exists an exact bounded e-variable X
for P againstQ satisfying infQ∈QEQ[logX]> 0 if and only if 0 6∈ SpanP + ConvQ, where
the closure is taken with respect to the total variation distance. IfQ is tight, then we have the
further equivalence to SpanP ∩ConvQ= ∅.

Note that we have put a stronger assumption on the e-variable X (infQ∈QEQ[logX]> 0)
than having nontrivial e-power against Q (for all Q ∈ Q, EQ[logX]> 0). Theorem 6.7 can
thus be seen as a sufficient condition for the existence of an exact e-variable that has nontrivial
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e-power against Q. Dealing with pivotal p-variables appears beyond the techniques of this
paper.

We pose the open problem of characterizing the existence of pivotal, exact, and nontrivial
p/e-variables with P,Q infinite. For instance, in a very close direction, we pose the following
conjecture, strengthening Theorem 6.7. We expect that the theory of simultaneous transport
between infinite collections of measures will be helpful.

CONJECTURE 6.8. Suppose that P and Q are collections of probability measures on
X with a common reference measure. Assume also that (P,Q) is jointly atomless.10 There
exists a pivotal and exact e-variable X satisfying infQ∈QEQ[logX] > 0 if and only if 0 6∈
SpanP + ConvQ, where the closure is taken with respect to the total variation distance.

Our next result shows that surprisingly, even in simple settings where P and Q are seem-
ingly distant, an exact e-variable may not exist.

PROPOSITION 6.9. Let P be an infinitely divisible distribution on Rd with a density p.
Consider P := {Pθ}θ∈Rd that are the shifts of the measure P , where Pθ has density p(x− θ).
Let Q be any distribution on Rd with a density q. Then for each Q that contains Q, there
exists no exact e-variable for P that is nontrivial for Q.

Note that here we have reached a slightly stronger conclusion than the forward direction
of Theorem 6.7, that even an unbounded e-variable would not exist. The absolute continuity
of Q cannot be removed. For instance, if Q has a mass at x ∈ Rd, X = 1 + δx would be an
exact e-variable that is nontrivial for {Q}.

A particular instance of interest is when Q is Gaussian. In this case, Gangrade, Rinaldo
and Ramdas (2023) proved that for the set of all Gaussians (of all means and all covariances),
there does not exist an e-variable with nontrivial e-power, even non-exact. Thus, our result
is stronger in that it allows for a much smaller P that just includes all translations of any
single Gaussian, but it is weaker in that it only shows that an exact e-variable with nontrivial
e-power does not exist.

We conclude this section with the following example that shows pivotal and exact p/e-
values exist for a classic statistical problem. Technically, the construction below does not
require any of our previous results, but it leads to a SOT of infinite dimensions.

EXAMPLE 6.10. Let P be the class of all symmetric distributions on R with no mass
at 0, and Q the class of distributions Q on R satisfying Q(R+) > 1/2. A typical case in
applications is to test whether the difference Y −X of pre-treatment measurement X and
post-treatment measurement Y is symmetric about 0. Many possible pivotal e-values for n
observations can be built based on the signs, the ranks, and the sizes of the data; see Ramdas
et al. (2020); Vovk and Wang (2024). For instance, with one observation, a simple e-value is

X(ω) =

{
3/2 if ω > 0;

1/2 if ω < 0,

which is exact. Note that X is also pivotal since X simultaneously maps P to the uniform
distribution on {1/2,3/2}. If one allows for additional randomization using a uniform distri-
bution on [0,1], then

X(ω,u) =

{
u/2 if ω > 0;

(u+ 1)/2 if ω < 0,
u ∈ [0,1],

is a nontrivial exact p-value.

10If P or Q is infinite, this can be defined in a natural way as in Definition 2.2.
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7. On the existence of nontrivial test (super)martingales. From here on, for t ∈
{1,2, . . .}, let Zt denote (Z1, . . . ,Zt), which represents data on Xt, and let F by default
represent the data filtration, meaning that Ft = σ(Zt).

A sequence of random variables Y ≡ (Yt)t>0 is called a process if it is adapted to F , that
is, if Yt is measurable with respect to Ft for every t. However, Y may also be adapted to a
coarser filtration G; for example, σ(Y t) could be strictly smaller than Ft. Such situations
will be of special interest to us. Henceforth, F will always denote the data filtration, and
G will denote a generic subfiltration (which could equal F , or be coarser). An F -stopping
time τ is a nonnegative integer-valued random variable such that {τ 6 t} ∈ Ft for each
t> 0. Denote by TF the set of all F -stopping times, excluding the constant 0 and including
ones that may never stop. Note that if G ⊆ F , then TG ⊆ TF . In this section, P is a set of
measures on the sample space X∞.

Test (super)martingales. An integrable process M is a martingale for P with respect to
G if

(16) EP [Mt | Gt−1] =Mt−1

for all t > 1. M is a supermartingale for P if it satisfies (16) with “=” relaxed to “6”.
A (super)martingale is called a test (super)martingale if it is nonnegative and M0 = 1. A
process M is called a test (super)martingale for P if it is a test (super)martingale for every
P ∈ P . The process M is then called a composite test (super)martingale. We say that M has
power one against Q if EQ[logMt]→∞ under all Q ∈Q.

It is easy to construct test martingales for singletons P = {P}: we can pick any Q�
P , and then the likelihood ratio process (dQ/dP )(Xt) is a test martingale for P (and its
reciprocal is a test martingale for Q). In fact, every test martingale for P takes the same
form, for some Q.

Composite test martingales M are simultaneous likelihood ratios, meaning that they take
the form of a likelihood ratio simultaneously for every element of P . Formally, for every
P ∈ P , there exists a distribution QP � P and satisfies Mt = (dQP /dP )(Xt). Trivially,
the constant process Mt = 1 is a test martingale for each P , and any decreasing process
taking values in [0,1] is a test supermartingale for each P . We call a test (super)martingale
nondegenerate if it is not always a constant (or decreasing) process. Nondegenerate test
supermartingales do not always exist: their existence depends on the richness of P .

On the existence of nondegenerate test (super)martingales. If P is too large, there
may be no nondegenerate test martingales with respect to F . To explain the situation, sup-
pose that P contains only measures of iid sequences with marginal distributions in a set
Pmar ⊆ Π(X). Examples of the non-existence phenomenon include the case when Pmar is
the set of all mean-zero subGaussian distributions (Ramdas et al., 2020), all log-concave
distributions (Gangrade, Rinaldo and Ramdas, 2023), or all Bernoulli distributions (Ramdas
et al., 2022). In all these cases, nondegenerate test martingales have been proven to not exist,
at least in the original filtration F . Sometimes, nondegenerate test supermartingales may still
exist, as in the subGaussian case. But if Pmar is too large or rich (as in the exchangeable and
log-concave cases), even nondegenerate test supermartingales do not exist.

However, the situation is subtle: in the above situations, there could still exist nondegen-
erate (or power one) test (super)martingales in some G ⊆ F . Indeed, for the exchangeable
setting described above, Vovk (2021) constructs exactly such a test martingale in a reduced
filtration. It is a priori not obvious exactly when shrinking the filtration allows for nontrivial
test (super)martingales to emerge, and how exactly one should shrink F (the relevant filtra-
tion G is not evident at the outset).
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Our results for (exact) e-variables have direct implications for the existence of test (su-
per)martingales. For simplicity, consider the iid case, where each Zi

law∼ P for some P ∈
Pmar or P ∈Qmar; that is, P = {P∞ | P ∈ Pmar} and Q= {P∞ | P ∈Qmar}.

COROLLARY 7.1. Let Pmar and Qmar be subsets of Π(X) allowing for a common ref-
erence measure R ∈ Π(X). If ConvPmar ∩ ConvQmar = ∅, then there exists a test super-
martingale for P that has power one againstQ. If 0 6∈ (SpanPmar + ConvQmar), then there
exists a test martingale for P that has power one against Q.

The proof is immediate from Kraft’s theorem (see Remark 6.3) and Theorem 6.7, and does
not require the joint non-atomicity condition (JA). The conditions on P and Q imply that an
(exact) e-variable (based on t sample points for any t) exists for P that is powerful againstQ
by Corollary 6.4. We can form our (super)martingale by simply multiplying these e-values
for t= 1 (thus constructively proving the corollary).

We conjecture that the converse direction in the above corollary also holds, perhaps with
some additional conditions; in other words, we conjecture that if a test martingale for P
has power one against Q, then the span of Pmar does not intersect Qmar. (To explain why
we cannot directly invoke the reverse directions of our theorems, it is possible that the con-
struction of the e-variable at step t can use information about the distribution gained in the
first t− 1 steps. In short, there (of course) exist test (super)martingales that are not simply
the products of independent e-values, and ruling those out requires further arguments, for
example, presented in the subGaussian setting by Ramdas et al. (2020).)

The first (supermartingale) part of Corollary 7.1 is closely related to the main result
by Grünwald, de Heide and Koolen (2024), albeit they require some extra technical condi-
tions in their theorem statement while relaxing the polytope requirement. The second (mar-
tingale) part is new to the best of our knowledge, and is a key addition to the emerging
literature on game-theoretic statistics (Ramdas et al., 2023).

REMARK 7.2. Let Pmar = Conv({P1, . . . , PL}) with L finite and suppose Q ∈
SpanPmar but Q 6∈ Pmar. By Theorem 3.1, there does not exist a nontrivial test martingale
for P against {Q∞} with respect to the original filtration. On the other hand, if (AC) holds,
then by Theorem 4.9, there exists a reduced filtration — in particular, formed by combining
data points — with respect to which a nontrivial test martingale exists.

8. Summary. This paper uses tools from convex geometry and simultaneous optimal
transport to shed light on some fundamental questions in statistics: when can one construct
an exact p/e-value for a composite null, which is nontrivially powerful against a composite
alternative? The answer, in the case where the null and alternative hypotheses are convex
polytopes in the space of probability measures, is cleanly characterized by convex hulls and
spans of the null and alternative sets of distributions. Several other related properties, like
pivotality under the null, end up being central. For general null and alternative hypotheses
(which are not polytopes) that allow a common reference measure, we provide a further
characterization of the existence of an exact bounded e-variable that has a uniformly positive
e-power.

Our proofs are constructive when the alternative is simple, and in simple cases, we provide
corroborating empirical evidence of the correctness of our theory. A key role is played by the
shrinking of the data filtration (accomplished by the transport map which maps the composite
null to a single uniform). Implications for the existence of composite test (super)martingales
are also briefly discussed.

We mention some open problems along the way (see Conjecture 6.8 and Sections 4.4 and
7). For instance, it is of great interest to extend the SHINE construction to the composite
alternative setting.
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APPENDIX A: GENERAL RELATIONS ON THE EXISTENCE OF P- AND
E-VARIABLES

For convex polytopes P and Q in Π, we may write P = ConvP̃ and Q= ConvQ̃ where
P̃ and Q̃ are finite. The following result helps us to reduce the problems to the case where P
and Q are finite.

PROPOSITION A.1. Suppose that P = ConvP̃ and Q= ConvQ̃.

(i) There exists an (exact) nontrivial p-variable for P andQ if and only if the same exists for
P̃ and Q̃.11

(ii) There exists a (pivotal, exact, bounded) e-variable that is nontrivial for (or has nontrivial
e-power against) Q for P and Q if and only if the same exists for P̃ and Q̃.

PROOF. This is clear from definitions of p/e-variables.

As a result of the above proposition, in what follows, we can concern ourselves, without
loss of generality, with the case where P and Q are finite subsets of Π(X) (except for Sec-
tion 6.2). Recall again from Section 1 the difference between a nontrivial e-variable, and one
with nontrivial e-power.

PROPOSITION A.2. Suppose that P andQ are both finite. LetX be a (pivotal and exact)
bounded e-variable for P that is nontrivial for Q. Then there exists a (pivotal and exact)
bounded e-variable for P that has nontrivial e-power against Q.

PROOF. The following fact is crucial: by the Taylor expansion of the log function, for
every ε > 0, there exists δ > 0, such that for each x ∈ [1− δ,1 + δ], (1− ε)(x− 1) 6 logx6
(1 + ε)(x − 1). Note that each Y = (1 − b) + bX with b > 0 is clearly an e-variable. On
the other hand, since X is bounded, the range of Y can be chosen arbitrarily close to 1 by
picking b small enough. Using minQ∈QEQ[X] > 1 we see that with b small enough, Y is
an e-variable that has nontrivial e-power against Q. Note that pivotality and exactness are
preserved under this transformation.

REMARK A.3. Assuming (P,Q) is jointly atomless, Proposition A.2 also holds true
without the boundedness assumption on X ; see Corollary 6.5 below. However, we are not
aware of a simpler proof of this fact.

In the sequel, when the equivalence of the existences is clear, we may write “there ex-
ists a nontrivial e-variable” instead. When Q is infinite, these two definitions are in general
different, as shown by the following example.

EXAMPLE A.4. Let Zµ denote the law N(µ,1) for µ ∈ R, and consider P = {Z0} and
Q= {Zµ | µ > 0}. Clearly, X(ω) = 1/2 + 1{ω>0} is a bounded e-variable that is nontrivial
for Q. Suppose for contradiction that Y is a bounded e-variable that has nontrivial e-power
against Q. Since Y cannot be a constant, EZ0 [logY ] < EZ0 [Y ]− 1 = 0. Since Zµ→ Z0 in
total variation as µ→ 0, we have for µ > 0 small enough that EZµ [logY ]< 0, contradicting
EQ[logY ]> 0 for all Q ∈Q.

11Here and later, we mean that the statement holds regardless of whether the bracketed constraint exists, i.e.,
the current sentence contains two (different) statements.
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The following calibration result is in place to help us construct an e-variable based on a
p-variable.

PROPOSITION A.5. Suppose that Q is finite.

(i) If there exists an exact (hence pivotal) and nontrivial p-variable, then there exists a
pivotal, exact, and bounded e-variable with nontrivial e-power against Q.

(ii) If there exists a nontrivial p-variable, then there exists a bounded e-variable with non-
trivial e-power against Q.

PROOF. (i) Suppose that X is an exact nontrivial p-variable. It follows that E := 2− 2X
is a pivotal, exact, and bounded e-variable, and EQ[E]> 1 for each Q ∈Q. Proposition A.2
then finishes the proof. (ii) is similar, where we recall that without loss of generality, a p-
variable takes values in [0,1].

Our next simple result provides general necessary conditions for the existence of p/e-
variables, hence answering the trivial parts of (Q-existence).

PROPOSITION A.6. Suppose that P and Q are arbitrary subsets of Π(X).

(i) If there exists a nontrivial e-variable for Q, then ConvP ∩ConvQ= ∅.
(ii) If there exists an exact and nontrivial e-variable for Q, then SpanP ∩ConvQ= ∅.

PROOF. For (i), suppose that R ∈ConvP ∩ConvQ, then since EP [X] 6 1 for all P ∈ P ,
we have ER[X] 6 1. But EQ[X]> 1 for all Q ∈Q implies ER[X]> 1, yielding a contradic-
tion. For (ii), suppose that R ∈ SpanP ∩ ConvQ, then EP [X] = 1 for all P ∈ P gives that
ER[X] = 1. But EQ[X]> 1 for all Q ∈Q gives ER[X]> 1, yielding a contradiction.

Let us end this section by incorporating the following important result, which sometimes
helps us remove the jointly atomless condition when pivotality is not involved.

PROPOSITION A.7. Fix P and Q. If there exists an (exact) e-variable (defined on (X×
[0,1],F ⊗B([0,1]))) that is nontrivial for {Q×U1}Q∈Q with null {P ×U1}P∈P , then there
exists an (exact) e-variable that is nontrivial for Q with null P .

PROOF. Let Y be an exact e-variable that is nontrivial for {Q×U1}Q∈Q with null {P ×
U1}P∈P . Define X = EU1 [Y ] by taking the expectation of Y over the second coordinate.
Then EPi [X] = EPi×U1 [Y ] = 1 and EQj [X] = EQj×U1 [Y ]> 1, meaning that X is an exact
e-variable nontrivial for Q. The non-exact case is similar.

APPENDIX B: PROOF OF RESULTS FROM SECTION 3

PROOF OF THEOREM 3.4. That (a)⇒(b) is precisely Proposition A.5; (b)⇒(c) is clear,
and (c)⇒(d) is immediate from Proposition A.6. For (d)⇒(a), we define the set D =DL =
(−∞,1)L∪ (1,∞)L∪{1}. We claim that it suffices to find a measure µ�cx γ that is suppor-
ted on D and not equal to δ1. Given such µ, we apply Lemma 2.5 with d= L to find meas-
ures F1, . . . , FL such that (dF1/dU1, . . . ,dFL/dU1)|U1

= µ. Since µ is supported on D, we
may without loss assume that there is a threshold β ∈ (0,1) such that for each 1 6 i 6 L,
dFi/dU1 6 1 on [0, β) and dFi/dU1 > 1 on (β,1]. In particular, Fi �st U1. Proposition 2.3
then yields a random variable X ∈ T ((P1, . . . , PL,Q), (F1, . . . ,FL,U1)). Let Ψ be as given
in Lemma F.4(ii). By definition, Ψ ◦X is a nontrivial p-variable.
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To find a measure µ �cx γ that is supported on D and not equal to δ1, for simplicity we
translate D by 1, and from now on D = (−∞,0)L ∪ (0,∞)L ∪ {0} and γ has mean 0. Our
goal is to find a measure µ supported on D such that µ�cx γ and µ 6= δ0. We apply induction
on L. Suppose that L= 2. Then since Q 6∈Conv(P1, P2), the measure γ is not supported on
any line that has a negative slope and contains 0. There are two cases.

• If γ is not supported on any line (hyperplane in R2), then Q 6∈ Span(P1, P2). By The-
orem 3.1, a nontrivial p-variable exists.

• If γ is supported on a line, then such a line must contain 0 and have a positive slope, and
hence is contained in D.

Now suppose that L> 2. We say a setK ⊆RL is a linear cone if it is the union of a convex
cone and its symmetric image around 0 in RL. Clearly, D is a linear cone, and

(i) the intersection of a subspace and a linear cone is a linear cone;
(ii) if S is a subspace of RL and K is a linear cone, then {0}( S ∩K if and only if there

exists a one-dimensional subspace T of S such that T ⊆K .

Since Q 6∈Conv(P1, . . . , PL), the measure γ is not supported on any hyperplane that is con-
tained in Dc ∪ {0} and contains 0. If γ is not supported on any hyperplane, then using
Theorem 3.1, a nontrivial p-variable exists. Thus we may assume that γ is supported on some
hyperplane S such that {0} ( S ∩ D. We then lower the dimension by one and identify
S = RL−1. There are two cases.

• If γ is not supported on any hyperplane in S, then there exist points x1, . . . , xL−1 ∈ suppγ
such that ri aff{x1, . . . , xL−1} = S. Let T be a one-dimensional subspace of S such that
T ⊆ D. Then T ∩ Conv{x1, . . . , xL−1} is nonempty. Using Lemma F.2, we may find a
measure µ supported on the bounded set T ∩Conv{x1, . . . , xL−1} (and thus supported on
D) such that µ�cx γ and µ 6= δ0. It follows that a nontrivial p-variable exists.

• If γ is supported on a hyperplane S′ of S, then by Mazur’s separation theorem (Conway
(1990, Corollary 3.4)) and since γ is not supported on any hyperplane that intersects with
D only at 0, we must have {0}( S′ ∩D. In this case, we have reduced the dimension by
one. Thus induction works for this case.

By reducing the problem iteratively in the above manner, we eventually arrive at the problem
with L= 2, which we already showed above.

APPENDIX C: PROOF OF RESULTS FROM SECTION 4

PROOF OF THEOREM 4.2. Suppose that Z is a maximizer to (3). Since Z is a pivotal e-
variable, we denote by F ′ as the common distribution of Z under Pi, 1 6 i6 L, and G′ the
distribution of Z under Q. Let Z̃ be the identity random variable on R, we have EF ′

[Z̃] = 1.
By Gibbs’ inequality,

EQ[logZ] = EG′
[log Z̃] 6 EG′

[
log

dG′

dF ′

]
= EQ

[
log
(dG′

dF ′
(Z)
)]
.

Thus, X = (dG′/dF ′)(Z) must also be a maximizer to (5).

PROOF OF PROPOSITION 4.3. We induct on L. The base case is L= 1, where the claims
follow simply by picking Hx = (−∞, x].

Fix an arbitrary L > 2 and x > 0. Consider the plane PL = {x ∈ RL | x1 = x2} ⊆ RL,
so that I+ ⊆ PL. The collection of lines in PL through x1 will be denoted by Lθ, θ ∈
[0,2π), where I+ ⊆ L0. For each Lθ , consider the projection of γ on the hyperplane Pθ to
which Lθ is normal. It follows from our induction hypothesis that there is some half-space
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Hθ,x of RL on which some measure µθ,x 6 γ is supported, such that bary(µθ,x) ∈ PL and
bary(γ − µθ,x) ∈ PL, as well as Lθ ⊆ ∂Hθ,x.

Suppose that (i) does not hold. Then γ is supported on a hyperplane S in RL containing
IL. By the induction hypothesis, we may find a closed half-space H′x of S satisfying the
conditions (i)-(iv). Clearly, any closed half-space Hx of RL containing H′x also satisfies the
same conditions.

Therefore, we may assume (i) and that γ is not supported on any hyperplane in RL. In
particular, µ0,x and µπ,x are non-zero. In this case, bary(µ0,x) and bary(µπ,x) lie in the two
different half-planes in PL separated by I+. By continuity of the measure, there exists some
θx such that bary(µθx,x) ∈ I+. This establishes (iii) and (iv). Finally, by replacing Hx by
Hc
x, we may assume that (ii) holds as well.
Suppose that (N) holds and µx, νx are distinct measures satisfying the above conditions.

Then µx − νx is a nontrivial signed measure supported on a hyperplane in RL, contradicting
(N).

The proof of Theorem Theorem 4.4 requires the following lemma.

LEMMA C.1. Let ν be a probability measure on I+
L such that ν �cx γ. For Hx and µx

defined in Proposition 4.3, denote by bx1 the barycenter of µx and ξ distributed as the first
marginal of ν. Then E[(ξ − x)−] 6 (x− bx)µx(RL) for all x> 0. Moreover, equality holds

for x if and only if for every martingale coupling (X,Y ) such that X law∼ ν and Y law∼ γ, it

holds (Y |X 6 x)
law∼ µx/µx(RL).

PROOF. Let vx be a unit normal vector to ∂Hx, such that the angle θx between the vectors
vx and 1 satisfies 0 6 θx < π/2. For y ∈ RL we write ay = 〈y, vx〉 with Euclidean inner
product. Define φx : RL→R by

φx(y) :=

{
ay/cosθx if ay 6 0;

0 if ay > 0.

Since φx is concave and ν �cx γ, it follows that

(bx − x)µx(RL) =

∫
φxdγ 6

∫
φxdν =−E[(ξ − x)−].

This completes the proof. The rest is clear.

PROOF OF THEOREM 4.4. We first prove (b)⇒(a). We first characterize the measure µ
by the cumulative density function of its first marginal (recall that µ is supported on the
nonnegative diagonal I+). For x> 0, pick µx as in Proposition 4.3. Note that x 7→ µx(RL)
is nondecreasing in x and continuous by (b). Define µ by the unique probability measure on
I+ such that µ([0, x]L) = µx(RL).

We next show that µ�cx γ. By Strassen’s theorem, it suffices to find a martingale coupling
(X,Y ) such that X law∼ µ and Y law∼ γ. Let us fix X law∼ µ and let

(Y | x <X 6 x′)
law∼ µx′ − µx

µx′(RL)− µx(RL)
,

where we identify the random variableX supported on I with its first coordinate. This defines
a coupling (X,Y ) since x 6 x′ =⇒ µx 6 µx′ . Let a > 0 be arbitrary. On the event {X 6
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a}, Y is distributed as µa/µa(RL). By Proposition 4.3, we have E[Y 1{X6a}]× 1 ∈ I+. In
addition,

E
[
X1{X6a}

]
× 1 =

(∫ a

0
xd(µx(RL))

)
× 1,

which is exactly bary(µa) projected to I . Therefore, we must have E[X1{X6a}] =
E[Y 1{X6a}], so that (X,Y ) is indeed a martingale. Thus µ�cx γ.

Now by Lemma 2.1(i), it suffices to show that for each ν �cx γ and ξν , ξµ denoting the
first marginals of ν,µ, it holds that E[(ξν −x)−] 6 E[(ξµ−x)−] for all x> 0. This is indeed
a consequence of Lemma C.1, since

E[(ξµ − x)−] = xµx(RL)−
∫
xd(µx(RL)) = (x− bx)µx(RL).

We next show (a)⇒(b). Suppose that x < y but µx 66 µy . In particular, suppµx 6⊆ suppµy .
We may assume that µx(RL) and µy(RL) are positive. Suppose for contradiction that (a)
holds with a maximum element µ. We define the measures

νx = µx(RL)δbary(µx) + (1− µx(RL))δbary(γ−µx)

and similarly νy . Then with the usual notation,

E[(ξµ − x)−] > E[(ξνx − x)−] = (x− bx)µx(RL)(17)

and

E[(ξµ − y)−] > E[(ξνy − y)−] = (y− by)µy(RL).(18)

By Lemma C.1, equalities hold for (17) and (18), and for every martingale coupling (X,Y )

such that X law∼ µ and Y law∼ γ, it holds (Y | X 6 x)
law∼ µx/µx(RL) and (Y | X 6 y)

law∼
µy/µy(RL). This contradicts suppµx 6⊆ suppµy .

The following supporting lemma will prove useful in proving Theorem 4.7.

LEMMA C.2. Suppose that (N) holds and there exists a convex set Γ ⊆ R2 such that γ
is supported on ∂Γ. For x > 0, let Hx and µx be defined as in Proposition 4.3. Then for
0 6 x6 x′, µx 6 µx′ .

PROOF. Fix 0 6 x < x′. Define C1 = Hx \ H◦x′ and C2 = Hx′ \ H◦x. It follows that the
positive part of µx − µx′ is supported on C1. Let us define

S = R1+ ∂Hx ∩ ∂Hx′ .

The line S separates R2 into two (closed) half-spaces, and we denote by H′ the one that
does not contain C1. Since the barycenters of µx and µx′ lie on I+, it suffices to show that
γ(C2 \ (C1 ∪ H′)) = 0. Suppose not. Then there exist z1 ∈ ∂Γ ∩ C1 and z2 ∈ ∂Γ ∩ C2 \
(C1 ∪H′). Since Γ is convex, it cannot hold that both x1 and x′1 belong to Γ◦. Suppose that
x1 6∈ Γ◦. Then by convexity of Γ and our assumption (N), we have µx = 0, thus µx 6 µx′

holds trivially. The case x′1 6∈ Γ◦ is similar.

PROOF OF THEOREM 4.7. The first claim follows from Theorem 4.4 and Lemma C.2.
The existence of F,G follows from Lemma 2.5 with d= L, by setting G= U1.

For the proof of Theorem 4.9, we need the following lemma on independence of powers
of probability measures.
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LEMMA C.3. For distinct measures P1, . . . , PL on an Euclidean space X, there exists
k > 1 such that P k1 , . . . , P

k
L are linearly independent probability measures on Xk.

PROOF. For notational brevity, we assume X = R, where the general case of higher-
dimensional spaces follows from essentially the same argument. By assumption, the char-
acteristic functions of the probability laws P1, . . . , PL are distinct, and hence there exists
λ = (λ1, . . . , λL−1) ∈RL−1 such that the expectations of the 2(L− 1)-dimensional random
vector

ψ(λ,X) := (cos(λ1X), sin(λ1X), . . . , cos(λL−1X), sin(λL−1X))

are distinct under the laws X law∼ P`, 1 6 `6 L.12 Let us consider a number k > 1 that will
be eventually picked large enough. Define the following (simultaneous) transport map

T : Rk→R2(L−1)k, (x1, . . . , xk) 7→ (ψ(λ, x1), . . . ,ψ(λ, xk)),

and denote by Q` the pushforward of (P`)
k under T , for 1 6 `6 L.13 Note that each Q` is a

law on R2(L−1)k, whose coordinates are denoted by x = (xi,j)16i62(L−1),16j6k. By law of
large numbers, the law of Q` is concentrated near the set

R` :=

{
x :
(1

k

k∑
j=1

x2i−1,j ,
1

k

k∑
j=1

x2i,j

)

=
(
EP` [cos(λiX)],EP` [sin(λiX)]

)
, ∀1 6 i6 L− 1

}
.

Since EP` [ψ(λ,X)] are distinct for 1 6 `6 L, the sets R` are disjoint. More precisely, using
a quantitative version of the central limit theorem (e.g., Theorem 1.3 of Talagrand (1996)),
we know that for any ε > 0, there exists C = C(ε,P) > 0 such that for k > C , there are
disjoint sets {A`}16`6L (each A` contains Q`) such that each Q` is concentrated in A`, in
the sense that

• for each `, Q`(A`)> 1/2;
• for each `′ 6= `, Q`(A`′)< ε.

For example, we may take

A` :=

{
x :
(1

k

k∑
j=1

x2i−1,j ,
1

k

k∑
j=1

x2i,j

)
∈
(
EP` [cos(λiX)]− k−1/3,EP` [cos(λiX)]

+ k−1/3
)
×
(
EP` [sin(λiX)]− k−1/3,EP` [sin(λiX)] + k−1/3

)
, ∀1 6 i6 L− 1

}
.

We next show that the probability measures {Q`}16`6L are linearly independent for ε =
1/(2L). Indeed, suppose that α1Q1 + · · · + αLQL = 0. Then for each 1 6 i 6 L, by the
triangle inequality,

1

2
|αi|< |αi|Qi(Ai) =

∣∣∣∑
`6=i

α`Q`(Ai)
∣∣∣6∑

`6=i
|α`|Q`(Ai)< ε

L∑
`=1

|α`|.

12Here, we are using the elementary principle that for L distinct functions on a common domain, there exist
L− 1 points in the domain such that no two functions agree on all of the L− 1 points. This can be proved using
induction.

13Our notation omits the dependence of T and Q` on k.
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Summing the above terms over 1 6 i 6 L yields 2Lε > 1, a contradiction. In conclusion,
with ε= 1/(2L) we found k > 1 such that Q1, . . . ,QL are linearly independent. Since each
Q` is the pushforward of (P`)

k under T , the probability measures (P1)k, . . . , (PL)k must be
linearly independent as well.

PROOF OF THEOREM 4.9. The first claim follows immediately from Lemma C.3 applied
to the distinct measures P1, . . . , PL,Q. Next, we focus on the case whereQ satisfies (AC) and
P = {P1, . . . , PL} consists of independent probability measures. Suppose that Q ∈ SpanP
and Q2 ∈ SpanP2. Denote by fj = dPj/dQ, so that by our assumption, f1, . . . , fL are lin-
early independent as functions in L1(Q). By construction, there exists a unique tuple of
nonzero numbers (a1, . . . , aL) such that

∑L
j=1 ajPj =Q. In particular,

∑L
j=1 aj = 1 and

1 = a1f1 + · · ·+ aLfL Q-a.e.(19)

Since Q2 ∈ SpanP2, there exist b1, . . . , bL such that for any set A ∈ F ,∫
A×A

1Q(dx)Q(dy) =

∫
A×A

L∑
j=1

bjfj(x)fj(y)Q(dx)Q(dy).

By symmetry of the integrand with respect to x, y, we must have for any A,B ∈ F ,∫
A×B

1Q(dx)Q(dy) =

∫
A×B

L∑
j=1

bjfj(x)fj(y)Q(dx)Q(dy).

By Carathéodory’s extension theorem, it holds

L∑
j=1

bjfj(x)fj(y) = 1 Q2-a.e.(20)

By considering the a.e. set y ∈X where (20) holds and comparing (19) and (20), we have for
any 1 6 j 6 L, fj is Q-a.e. constant. This implies P1 =Q. Therefore, Q ∈ P .

PROOF OF PROPOSITION 4.11. We first show that for any n,m ∈ N, `n+m > `n + `m.
Suppose that X(n) attains the maximum e-power among pivotal and exact e-variables against
Qn for Pn, and X(m) against Qm for Pm. Define X(n+m)(ω1, ω2) = X(n)(ω1)X(m)(ω2),
where ω1 ∈ Xn and ω2 ∈ Xm. Clearly, X(n+m) is pivotal and exact against Qn+m for
Pn+m. Its e-power is EQn+m

[logX(n+m)] = EQn [logX(n)] + EQm [logX(m)], thus by con-
struction of X(n) and X(m), `n+m > `n + `m holds. It then follows from Fekete’s lemma
that `n/n converges to some limit in R ∪ {∞}. Since this e-power is bounded from
above by the e-power for {Pn1 } against {Qn}, we have for all 1 6 i 6 L that `n/n 6
EQn [log(dQn/dPni )]/n= EQ[log(dQ/dPi)] as we see in Example 4.1. To see that the limit
is positive, it suffices to prove `k > 0 for some k > 0 using the property `n+m > `n + `m.
Nevertheless, that `k > 0 follows directly from Theorem 4.9 and Theorem 3.1.

APPENDIX D: PROOF OF RESULTS FROM SECTION 5

We start the proof of Theorem 5.3 with a few simple observations.

LEMMA D.1. Suppose that ρ is a finite measure on R, and I is a nonempty bounded
open interval. Assume that there exists a sequence of decreasing intervals In ↓ I , such that
bary(ρ|In) 6∈ I for every n where the barycenter is well-defined. Then I ⊆ (suppρ)c.
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PROOF. This is a direct consequence of continuity of measure. We omit the details.

LEMMA D.2. Assuming (N), any maximal element ν inMγ is atomless.

PROOF. Suppose that ν has an atom at x01. Then a martingale coupling of ν and γ trans-
ports the mass at x01 to some measure γ′ on RL. In particular, bary(γ′) = x01 and γ′ 6 γ.
By assumption (N), suppγ′ is not contained in any hyperplane. Using a similar argument in
the proof of Proposition 3.3, we conclude that there exists a measure ν ′ �cx γ

′ supported on
I+ satisfying ν ′ 6= γ′(RL)δx0

. The new measure ν − γ′(RL)δx0
+ ν ′ is then larger than ν in

convex order, contradicting the maximality of ν.

PROOF OF THEOREM 5.3. Suppose that µ is the measure from the construction, µ�cx ν,
and ν �cx γ with ν supported on I+. Our goal is to show µ= ν. Let ξµ, ξν denote the first
coordinate of µ,ν. Consider the collection X of the first coordinates of all points x(s)

k , s>
0, 1 6 k 6 2s+1 defined in the middle of the construction. We first show that for each x ∈ X ,

P[ξµ > x] = P[ξν > x] and E[ξµ | ξµ > x] = E[ξν | ξν > x].(21)

Note that given the first equality, the second equality in (21) is equivalent to E[(ξµ − x)+] =
E[(ξν − x)+]. The proof is similar to the “⇒” direction of Theorem 4.4. Let πµ be any
martingale coupling of (µ,γ) and πν be any martingale coupling of (ν, γ). For x= x

(0)
1 = 1,

by (a symmetric version of) Lemma C.1, ξµ attains the maximum value of E[(ξµ−x)+], and
thus E[(ξµ − x)+] = E[(ξν − x)+]. Lemma C.1 further implies that14

πµ([0, x)×Hx) = πν([0, x)×Hx) = 1− πµ([x,∞)×Hc
x) = 1− πν([x,∞)×Hc

x).

In particular, P[ξµ > x] = P[ξν > x], proving (21). In the general case, consider x =

x
(s)
k . There exists an interval J whose endpoints are the two neighbor points of x(s)

k in
{x(m)

k }m<s,16k62m+1 ∪ {0,∞}. By definition, ν maximizes E[(ξµ − x)+], and µ maxim-
izes E[(ξµ − x)+1{ξµ∈J}]. Our induction hypothesis (21) applied to the right endpoint of
J meanwhile implies that the two optimization problems are the same. Thus, there exists a
similar block decomposition of the supports of πµ, πν where the total masses coincide on the
blocks, and (21) holds for x= x

(s)
k . We leave the details to the reader.

We now finish the proof given (21). We claim that the set X is dense in suppν. Indeed,
suppose that I is an open connected component of the open set R \ X . By construction and
(21), each x(s)

k is the barycenter of ν restricted to the interval formed by two neighbor points
of x(s)

k in {x(m)
k }m<s,16k62m+1 . In particular, there exist intervals Is ↓ I where the endpoints

of each Is belong to X and bary(ν|Is) 6∈ I . By Lemma D.1, I ⊆ (suppν)c, establishing the
claim.

Therefore, the distribution functions of µ and ν coincide on a dense subsetX of the support
of the atomless measure ν. This implies µ= ν.

We next prepare for the proof of Theorem 5.5. We say that a martingale {Xk}k>0 satisfies
the separated tree condition if

(i) there exists an array of real numbers {x(s)
k }s>0,16k62s such that for each s> 1,

x
(s)
1 6 x

(s)
2 6 . . .6 x

(s)
2s and x

(s−1)
` ∈ [x

(s)
2`−1, x

(s)
2` ], 1 6 `6 2s−1.(22)

14By our assumption on γ, µ cannot have an atom at x.
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and if As denotes the multi-set consisting of values of {x(r)
k }06r<s,16k62r ,{

x
(s)
k > max{x ∈As | x6 x

(s−1)
(k+1)/2, x 6= x

(s−1)
(k+1)/2} if k is odd;

x
(s)
k 6 min{x ∈As | x> x

(s−1)
k/2 , x 6= x

(s−1)
k/2 } if k is even;

(ii) X0 is a constant, and for s> 1,

supp (Xs |Xs−1 = x
(s−1)
k ) = {x(s)

2k−1, x
(s)
2k }.

In particular, if a martingale satisfies the separated tree condition and the inequalities in (22)
are strict (i.e., x(s)

1 < x
(s)
2 < · · · < x

(s)
2s for all s > 1), the martingale is backward determin-

istic, meaning that {Xj}nj=1 is σ(Xn)-measurable for all n ∈ N (Section 3.2 of Nutz, Wang
and Zhang (2022)).

Intuitively, the separated tree condition asserts that the martingale can be represented using
a binary tree on R (with k corresponding to the depth of the tree), and the branches from
all different levels, when projected to the real line as intervals, are either disjoint or have
containment relationship.

EXAMPLE D.3. The Simons martingale introduced by Simons (1970) satisfies the separ-
ated tree condition; see Example 5.2. More generally, the SHINE martingale defined by (12)
also satisfies the separated tree condition.

PROOF OF LEMMA 5.6. The martingale property implies

(23) E[(X∞ −Xk)
2] = E[X2

∞ −X2
k ] =

∞∑
j=k

E[X2
j+1 −X2

j ] =

∞∑
j=k

E[(Xj+1 −Xj)
2],

and it suffices to bound E[(Xk −Xk+1)2] for each k. By conditioning on Xk, we have

E[(Xk −Xk+1)2] 6
2k+1∑
j=1

pjd
2
j ,(24)

where the index j refers to the 2j+1 legs from the support of Xk to the support of Xk+1, and
pj , dj are the probability and the displacement (in absolute value) carried by the leg j.

The next key step is to discover an upper bound for each pj , possibly in terms of dj ,
using the following Lemma D.4. The probability pj can be written naturally as a product of
conditional probabilities along a spine (or a directed path from the root of the binary tree) in
the binary tree representation of {Xk}k>0. We label the (absolute value of the) displacement
along the spine from level k − 1 to k by bk, and (absolute value of) the other displacement
by ak. In other words, if {xk}k>0 denotes the nodes (values) on the spine and each xk has
descendants xk+1 and x′k+1, then bk = |xk−1− xk| and ak = |xk−1− x′k|. By the martingale
property, the total probability on the spine {xk}k>0 until level n is given by

∏n
k=1 ak/(ak +

bk).
Suppose that the martingale is uniformly bounded by M . By the separated tree condi-

tion,
∑

j dj 6 2M . Next, it is elementary to check that by the separated tree condition,
bk−2 > min{ak, ak−1} and bk−1 > min{ak, bk}. By Lemma D.4 applied with n = k + 1,
we conclude that pj 6

√
2M/dj r

k−1, where r < 0.827. Therefore,

2k+1∑
j=1

pjd
2
j 6 rk−1

√
2M

2k+1∑
j=1

d
3/2
j 6 4M2rk−1.(25)
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Combining (23), (24) and (25), we get

E[(Xk −X∞)2] 6CM2rk,

as desired.
Let us now consider the general case where X is not uniformly bounded. Take M > |X0|.

Let τM be the first hitting time to {x : |x|>M} of {Xk}k>0. We use the same notation as in
(24) for a fixed k. Let JM ⊆ {1, . . . ,2k+1} be the collection of all indices of possible paths
(up to time k) with τM =∞. Note that

E[1{τM=∞}(X
2
k+1 −X2

k)] =
∑
j∈JM

pjd
2
j .

Moreover,
∑

j∈JM dj 6 2M . The same argument as in (25) gives∑
j∈JM

pjd
2
j 6 4M2rk−1.

This implies E[1{τM=∞}(X
2
∞ −X2

k)] 6CM2rk for some C > 0. Hence,

E[(X∞ −Xk)
2] = E[X2

∞ −X2
k ]

= E[1{τM<∞}(X
2
∞ −X2

k)] +E[1{τM=∞}(X
2
∞ −X2

k)]

6 E[1{τM<∞}X
2
∞] +CM2rk.

Let τ+
M be the first hitting time to {x : x>M} and τ−M be the first hitting time to {x : x6

−M}. Note that by the separated tree condition, if M >X0, then τ+
M <∞ implies Xk >X0

for all k > 0 and X1 >X0. Therefore, conditional on the event τ+
M <∞, X is a martingale

that is bounded from below by X0. By Ville’s inequality, for M >X0,

P(τ+
M <∞) 6 P(τ+

M <∞ |X1 >X0)

= P

(
sup
k>0

Xk >M |X1 >X0

)
6

E[X∞ |X1 >X0]−X0

M −X0
=O(M−1).

Similarly, the same analysis holds for τ−M . Hence, we can conclude P(τM <∞) =O(M−1).

Since X∞ ∈ L2+ε for ε > 0, E[1{τM<∞}X
2
∞] = O(M−δ

′
) for some δ′ > 0 by Hölder’s

inequality. Taking M = r−k/(2+δ′) and q = rδ
′/(2+δ′) ∈ (0,1) yields that for some C > 0

(that may vary from line to line),

E[(X∞ −Xk)
2] 6C(M−δ

′
+M2rk) 6Cq−k.

This completes the proof in the general case.

LEMMA D.4. Suppose that non-negative numbers a1, . . . , an, b1, . . . , bn satisfy:

• bk−2 > min{ak, ak−1};
• bk−1 > min{ak, bk}.

Then there exists r < 0.827 such that15

n∏
k=1

ak
ak + bk

6

√
b1
bn
rn−2.(26)

15We set 0/0 = 0.
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PROOF. Consider a number K > 0 to be determined. Define

ck =
( ak
ak + bk

)2 bk
bk−1

.(27)

For k > 2, we consider the following four different cases.

(i) If bk > bk−1, then ak 6 bk−1 < bk, so that

ak
ak + bk

6
bk−1

bk + bk−1
6

1

2

√
bk−1

bk
.

In this case, ck 6 1/4.
(ii) If bk 6 bk−1 and bk−1 > bk−2, then similarly as in case (i),

ak−1

ak−1 + bk−1
6

bk−2

bk−1 + bk−2
6

1

2

√
bk−2

bk−1
,

so that ck−1 6 1/4. On the other hand, ck 6 1. Therefore, ckck−1 6 1/4.
(iii) If bk 6 bk−1 6 bk−2, and ak−1 6Kbk−1 or ak 6Kbk, then either ck−1 6K2/(1 +K)2

and ck 6 1, or ck−1 6 1 and ck 6K2/(1 +K)2. In this case, ckck−1 6K2/(1 +K)2.
(iv) If bk 6 bk−1 6 bk−2, ak−1 >Kbk−1, and ak >Kbk, then

bk−2 > min{ak, ak−1}>Kmin{bk, bk−1}>Kbk.

In this case, ckck−1 6 1/K .

Upon decomposing the sequence {bk} into increasing and decreasing parts, the above four
cases together yield that

n∏
k=2

ck 6 max
{1

2
,

K

1 +K
,

1√
K

}n−2
.(28)

To optimize our bound, we consider the quantity

inf
K>0

max
{1

2
,

K

1 +K
,

1√
K

}
.

The minimax value is denoted by r2 < 0.683. By (27) and (28), we obtain

bn
b1

n∏
k=2

( ak
ak + bk

)2
6 r2(n−2).

Rearranging gives (26).

Next, we apply Lemma 5.6 to deduce the exponential convergence of the e-power. Suppose
f ∈ C2(R) has sup |f ′′|<∞. Then it would follow from Taylor’s theorem and Lemma 5.6
that

|E[f(Xk)]−E[f(X∞)]|6C sup |f ′′|rk.
However, in our case of main interest (see e.g., (7)), f(x) = − logx. To overcome the dif-
ficulty arising from sup |f (2)| =∞, we will assume an anti-concentration bound of X∞ at
0.

COROLLARY D.5. Suppose that {Xk}k>0 is a R+-valued martingale satisfying the
separated tree condition with Xk → X∞ a.s. and E[X2+ε

∞ ] < ∞ for some ε > 0 and
E[X−2

∞ ]<∞. Then there exist r < 1 and a constant C > 0 such that

|E[logXk]−E[logX∞]|6Crk.
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PROOF. For each k ∈N, by the mean-value theorem and Hölder’s inequality,

|E[log(Xk)]−E[log(X∞)]|6 E
[
|X∞ −Xk|max

{
X−1
k ,X−1

∞
}]

6 E
[
(X∞ −Xk)

2
]1/2 E [max

{
X−2
k ,X−2

∞
}]1/2

.

Note that E[(X∞ −Xk)
2] 6 cq−k for some q ∈ (0,1) and c > 0, as implied by Lemma 5.6.

Moreover, (Xk)k>0 is a nonnegative martingale, which implies E[X−2
k ] 6 E[X−2

∞ ]. Hence,

E
[
max

{
X−2
k ,X−2

∞
}]

6 E
[
X−2
k +X−2

∞
]
6 2E[X−2

∞ ]<∞.

Therefore, we get |E[log(Xk)]−E[log(X∞)]|6Cr−k for some C > 0 and r = q1/2 ∈ (0,1).

PROOF OF THEOREM 5.5. By property of the SHINE construction (Theorem 5.3),

X∞1�cx

(
dP1

dQ
, . . . ,

dPL
dQ

)∣∣∣
Q
.

Therefore, for each j ∈ {1, . . . ,L}, we have by linearity of the coordinate map that
(dPj/dQ)|Q �cx X∞. In particular, using the definition of the convex order we have

EQ
[(dPj

dQ

)2+ε]
<∞ =⇒ E[X2+ε

∞ ]<∞

and

EQ
[(dPj′

dQ

)−2]
<∞ =⇒ E[X−2

∞ ]<∞.

These verify the assumptions in Corollary D.5. The conclusion of Theorem 5.5 then follows
directly from that of Corollary D.5.

EXAMPLE D.6. Suppose that Pj ∼N(mj ,1), 1 6 j 6 L, and Q∼N(mQ,1) are nonde-
generate Gaussian distributions. The laws of the Radon–Nikodym derivatives are

dPj
dQ

∣∣∣
Q

= eξ·(mj−mQ)+ 1

2
(‖mQ‖2−‖mj‖2)

∣∣∣
ξ
law∼N(mQ,1)

.

Since the moment generating function of a nondegenerate multivariate Gaussian distribu-
tion is well-defined everywhere, the conditions (14) and (15) are satisfied. Therefore, Corol-
lary 5.5 implies that the SHINE construction enjoys exponential convergence when testing
P1, . . . , PL against Q.

APPENDIX E: PROOF OF RESULTS FROM SECTION 6

To prove Theorems 6.1 and 6.2, we build upon the ideas from Proposition 3.3.

LEMMA E.1. Let V ⊆ Rd be a subspace containing 1 ∈ Rd and S be a collection of
affine hyperplanes in Rd containing 1 such that whenever S ∈S and an affine subspace T
satisfies T ∩ V ⊆ S, it holds T ⊆ S′ for some S′ ∈S . Then for each measure µ centered at
1 whose support is not a subset of S for any S ∈S , there exists a measure ν on V such that
ν �cx µ and the support of ν is not a subset of S for any S ∈S .

PROOF. The proof is similar to the proof of Proposition 3.3. Define T = aff suppµ. By
Lemma F.2, it suffices to find points s1, . . . , sk ∈ suppµ such that ri(Conv{s1, . . . , sk};T )
contains 1 and intersects with V not on a single S ∈S .
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Suppose that the contrary holds. That is, any s1, . . . , sk ∈ suppµ satisfies 1 6∈
ri(Conv{s1, . . . , sk};T ) or ri(Conv{s1, . . . , sk};T ) ∩ V ⊆ S for some S ∈ S . By
Lemma F.1(i), any ri(Conv{s1, . . . , sk};T ) is contained in ri(Conv{s1, . . . , sK};T ) for
some k 6K and s1, . . . , sK ∈ suppµ such that 1 ∈ ri(Conv{s1, . . . , sK};T ). This implies
for all s1, . . . , sk ∈ suppµ that ri(Conv{s1, . . . , sk};T ) ∩ V ⊆ S for some S ∈ S . Con-
sequently, there exists S ∈ S such that ri(Conv suppµ;T ) ∩ V ⊆ S. By Lemma F.1(ii),
T ⊆ aff ri(Conv suppµ;T ). Since V,S are affine spaces, it holds that T ∩V ⊆ S. Moreover,
suppµ⊆ T ⊆ S′ for some S′ ∈S by our assumption. Hence, the support of µ is contained
in S′, contradicting our assumption.

PROPOSITION E.2. Let L,M ∈ N and (P1, . . . , PL,Q1, . . . ,QM ) be a jointly atomless
tuple of probability measures on X such that Span(P1, . . . , PL) ∩ Conv(Q1, . . . ,QM ) = ∅.
Then there exist probability measures F,G1, . . . ,GM on R such that F 6∈Conv(G1, . . . ,GM )
and

T ((P1, . . . , PL,Q1, . . . ,QM ), (F, . . . ,F,G1, . . . ,GM )) 6= ∅.

PROOF. Let µ be a dominating measure for (P1, . . . , PL,Q1, . . . ,QM ), say µ =
(P1 + · · · + PL + Q1 + · · · + QM )/(L + M), and ν = U1. Then Span(P1, . . . , PL) ∩
Conv(Q1, . . . ,QM ) 6= ∅ is equivalent to the existence of {αi}16i6L and {βj}16j6M such
that

L∑
i=1

αi
dPi
dµ

=

M∑
j=1

βj
dQj
dµ

, βj > 0,

L∑
i=1

αi =

M∑
j=1

βj = 1.

Similarly, F ∈Conv(G1, . . . ,GM ) is equivalent to the existence of {λj}16j6M such that

dF

dν
=

M∑
j=1

λj
dGj
dν

, λj > 0,

M∑
j=1

λj = 1.

To this end, we define

S =

Sα,β | βj > 0,

L∑
i=1

αi =

M∑
j=1

βj = 1

 ,

where

Sα,β :=

(x1, . . . , xp, y1, . . . , yq) |
L∑
i=1

αixi =

M∑
j=1

βjyj

 .

We now claim that for each measure γ such that suppγ is not a subset of some S ∈ S ,
there exists τ �cx γ such that τ is supported on V := {(x,y) ∈ RL+M | x1 = · · ·= xL} but
not concentrated on a single Vλ := {(x,y) ∈ RL+M | x1 = · · · = xL =

∑M
j=1 λjyj} for all

λj > 0,
∑M

j=1 λj = 1. Provided the claim is true, we construct using Lemma 2.5 applied with
d= L+M the measures F,G1, . . . ,GM such that(

dF

dν
, . . . ,

dF

dν
,
dG1

dν
, . . . ,

dGM
dν

)∣∣∣
ν

= τ.

Since ν �cx γ and γ is supported on the hyperplane {(x,y) |
∑L

i=1 xi +
∑M

j=1 yj =

L + M}, our measure ν will be supported on the same hyperplane, thus ν = (LF +∑M
j=1Gj)/(L+M). In other words, µ,ν allow the same linear combination of the measure
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tuples (P1, . . . , PL,Q1, . . . ,QM ) and (F, . . . ,F,G1, . . . ,GM ). By Proposition 2.3 applied
with d= L+M ,

T ((P1, . . . , PL,Q1, . . . ,QM ), (F, . . . ,F,G1, . . . ,GM )) 6= ∅

holds as desired.
To prove the above claim, we apply Lemma E.1 with d= L+M , µ= γ, ν = τ , and V,S

defined as above. Note that if the support of τ is contained in V but not in a certain S, then
it cannot be contained in a certain Vλ. Thus the conclusion of Lemma E.1 suffices for our
purpose.

It then suffices to check the condition in Lemma E.1 that whenever S ∈S and an affine
subspace T satisfies T ∩ V ⊆ S, it holds T ⊆ S′ for some S′ ∈ S . To this end, we con-
sider Sα,β ∈S and first assume T is a hyperplane containing Sα,β ∩ V = {(x,y) | x1 =

· · · = xL =
∑M

j=1 βjyj}. In this case, a normal vector to T (which is unique up to a mul-
tiplicative constant) must also be a normal vector of Sα,β ∩ V , and hence must be of the
form (t1, . . . , tL,−β1

∑L
i=1 ti, . . . ,−βM

∑L
i=1 ti) for some t1, . . . , tL ∈ R. If

∑L
i=1 ti = 0,

then T ⊇ V , and thus V ⊆ Sα,β , which is impossible. Thus
∑L

i=1 ti 6= 0. It follows that for
some t1, . . . , tL with

∑L
i=1 ti 6= 0,

T =

(x1, . . . , xL, y1, . . . , yM ) |
L∑
i=1

tixi =

L∑
i=1

ti

M∑
j=1

βjyj

 .

Therefore, T ∈S . More precisely, T = St/
∑L
i=1 ti,β

.
Next, we prove the general case of an affine subspace T that satisfies T ∩ V ⊆ Sα,β . Note

that V 6⊆ Sα,β for each Sα,β ∈S , and that V is of dimension M + 1. Thus Sα,β ∩ V is of
dimension M . Let T ′ = T + (Sα,β ∩ V ) + V ⊥. Then T ′ is a hyperplane, T ⊆ T ′, and

T ′ ∩ V ⊆ (T + (Sα,β ∩ V ))∩ V = (T ∩ V ) + (Sα,β ∩ V )⊆ Sα,β.

This completes the proof.

PROOF OF THEOREM 6.1. The direction (a)⇒(b) is Proposition A.5, (b)⇒(c) is clear,
(c)⇒(e) being precisely Proposition A.6, and (e)⇒(d) is Proposition E.2. To show (d)⇒(a),
we let φ be a nontrivial p-variable with null {G1, . . . ,GM} and alternative {F}, whose ex-
istence is guaranteed by Theorem 3.4. Then by definition, φ ◦X has a common law that is
≺st U1 under each Pi, and has a law that is �st U1 under each Qj . Applying Lemma F.4(i)
then yields a random variable Ψ such that Ψ ◦ φ ◦X is an exact and nontrivial p-variable
as desired. Finally, by Proposition A.7, the direction (c)⇔(e) also holds without condition
(JA).

PROOF OF THEOREM 6.2. The proofs are similar to Theorem 3.4, where in the direction
(d)⇒(a) we replace the linear cone (−∞,0)L∪(0,∞)L∪{0} by the linear cone (−∞,0)L×
(0,∞)M ∪ (0,∞)L× (−∞,0)M ∪{0}. The last statement is verified by Proposition A.7 and
Remark 6.3.

PROOF OF THEOREM 6.7. We first show the “only if” direction. Suppose that 0 ∈
SpanP + ConvQ and X is an exact and bounded e-variable satisfying infQ∈QEQ[logX]>
0. In particular, since X is bounded, for a sequence of distributions converging in total
variation, the expectations of X also converge. Let P (n) ∈ SpanP and Q(n) ∈ ConvQ be
such that P (n) +Q(n)→ 0 in total variation. It follows that EP (n)

[X] = 1 and EQ(n)

[X] >
infQ∈QEQ[X] > 1. But then lim inf EP (n)+Q(n)

[X] > infQ∈QEQ[X] − 1 > 0, a contradic-
tion.
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Next, we show the “if” direction. Let R ∈Π(X) be as given. We may abuse notation and
identify each P ∈ P and Q ∈ Q with its density with respect to R. Clearly, convergence
in total variation is equivalent to convergence in L1(R). Thus, S := Span{P | P ∈ P} is
a closed subspace of L1(R). By assumption, the set C := Conv{Q | Q ∈ Q} satisfies that
C + S is closed, convex, and disjoint from 0 in the quotient space L1(R)/S. By the Hahn-
Banach separation theorem, there is h : L1(R)/S→R such that h|C+S > ε> 0. Composing
with the quotient map we obtain a linear functional h : L1(R)→ R, and it is easy to check
that h vanishes on S and h|C > ε. By duality, we may recognize h ∈ L∞(R). It follows that
the bounded random variable X = h+ 1 satisfies EP [X] = 1 + EP [h] = 1 +

∫
hPdR = 1

for each P ∈ P and EQ[X] = 1 +
∫
hQdR > 1 + ε for each Q ∈ Q. Proposition A.2 then

concludes the proof.
Suppose that Q is tight and that there exist P (n) ∈ SpanP and Q(n) ∈ ConvQ such that

P (n) + Q(n) → 0. By Prokhorov’s theorem, ConvQ is weakly compact. This implies for
some subsequence {nk}, Q(nk) is convergent. The limit then belongs to SpanP ∩ ConvQ.
The other direction is obvious.

PROOF OF PROPOSITION 6.9. By Sato (1999, Lemma 7.5), the Fourier transform of the
density p of an infinitely divisible distribution has no real zeros. By Wiener’s Tauberian the-
orem (Theorem 8 of Wiener (1933)), the linear span of the set of translates {p(· − θ)}θ∈R
is dense in L1(R). Therefore, there is P ∈ Span{Pθ : θ ∈ R} with density p̃ such that
dTV(P,Q) = (

∫
|p̃(x) − q(x)|dx)/2 < ε. In other words, Q ∈ Span{Pθ : θ ∈ R}, say we

have Q= limk→∞P
(k), where P (k) ∈ Span{Pθ : θ ∈R}.

Suppose that X is an exact e-variable that is nontrivial for {Q}. Then there exists a large
number K > 0 such that X̃ :=X1{X6K} satisfies EQ[X̃]> 1. Since X̃ is bounded, we have

1< EQ[X̃] = lim
k→∞

EP (k)

[X̃] 6 lim sup
k→∞

EP (k)

[X] = 1.

This leads to a contradiction.

APPENDIX F: SOME TECHNICAL RESULTS

F.1. Useful results from convex analysis. We start with a few well-known results from
convex analysis. We refer the readers to Rockafellar (1970) and Simon (2011) for more back-
ground.

LEMMA F.1. Let A ⊂ Rd be a closed set, and µ ∈M(Rd) with suppµ = A. Then the
following statements hold:

(i) affA= aff ri(ConvA; affA);
(ii) bary(µ) ∈ ri(ConvA; affA).

PROOF. (i) The ⊇ direction is obvious. To prove ⊆, we may replace A by ConvA and
without loss of generality assume A is also convex. Let a ∈ A and b ∈ ri(A; affA), then
elementary geometric arguments show that (a + b)/2 ∈ ri(A; affA); see Theorem 6.1 of
Rockafellar (1970). Thus A ∈ aff ri(A; affA).

(ii) We may without loss of generality assume affA = Rd and replace the relative in-
terior by interior. An application of the Hahn-Banach separation theorem yields bary(µ) ∈
ConvA. Suppose bary(µ) 6∈ ri(ConvA; affA) = (ConvA)◦, then the Hahn-Banach separa-
tion theorem implies the existence of a closed hyperplane H ⊆ Rd such that bary(µ) ∈ H
and (ConvA)◦ ⊆ Rd \ H; see Theorem 11.2 of Rockafellar (1970). Therefore, A ⊆ ∂H,
contradicting affA = Rd. By Theorem 6.3 of Rockafellar (1970), ri(ConvA; affA) =
ri(ConvA; affA). This completes the proof.
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We also prove the following variant of the Choquet-Meyer theorem.

LEMMA F.2. Suppose that µ is a finite measure on Rd, x1, . . . , xk ∈ suppµ, and x ∈
ri(Conv{x1, . . . , xk}; aff suppµ). Then there exists δ > 0 such that any measure γ with total
mass γ(Rd) 6 δ, supported on B(x; δ)∩ (aff suppµ), satisfies γ �cx µ̃ for some µ̃6 µ.

PROOF. First, we may assume without loss of generality that aff suppµ= Rd, and replace
the relative interior by interior. In this case, we must have aff{x1, . . . , xk}= aff suppµ= Rd,
otherwise (Conv{x1, . . . , xk})◦ = ∅ and the statement is vacuously true.

Since x ∈ (Conv{x1, . . . , xk})◦, there exists ε > 0 such that the distance of x from
∂Conv{x1, . . . , xk} is larger than ε. Let µN for N ∈ N be the conditional distribution of µ
given the σ-field generated by cubes with coordinates in Zd/N . The smallest cubes have size
(1/N)d. For each j = 1, . . . , k, pick a cube DN

j of size (1/N)d in Rd containing xj (possibly
on its boundary) that has a positive µ-measure, which is possible since xj is in the support of
µ. Let yNj = bary(µ|DN

j
). It is then clear that µN ({yNj })> 0 and µN ({yNj })δyNj �cx µ|DN

j
.

For N > d3/2/ε, ‖yNj − xj‖ < ε/d. Therefore, x ∈
ri(Conv{yN1 , . . . , yNk }; aff{yN1 , . . . , yNk }). Fix N > d3/2/ε such that the boxes {DN

j }16j6k
are disjoint. Write (y1, . . . , yk) = (yN1 , . . . , y

N
k ) and Dj = DN

j . Note that the distance
between x and ∂Conv{y1, . . . , yk} is positive by the triangle inequality, and hence
aff{y1, . . . , yk}= Rd, so that x ∈ (Conv{y1, . . . , yk})◦.

Pick δ > 0 small enough such that B(x; δ) ⊆ (Conv{y1, . . . , yk})◦ and that δ <
min{µN ({y1}), . . . , µN ({yk})}. By Choquet’s theorem (Theorem 10.7(ii) of Simon (2011)),
for each y ∈ B(x; δ), there exists a probability measure γy supported on {y1, . . . , yk} such
that bary(γy) = y, and γy is continuous in y.

Consider an arbitrary measure γ with total mass γ(Rd) 6 δ and supported on B(x; δ).
Define

γ̃ =

∫
γyγ(dy).

Observe that γ �cx γ̃ and γ̃ is supported on {y1, . . . , yk} with

γ̃({yj}) =

∫
γy({yj})γ(dy) 6 γ(Rd) 6 δ 6 µN ({yj}), 1 6 j 6 k.

Define

µ̃=

k∑
j=1

(
γ̃({yj})
µN ({yj})

)
µ|Dj .

It follows that

γ �cx γ̃ =

k∑
j=1

(
γ̃({yj})
µN ({yj})

)
µN ({yj})δyj �cx

k∑
j=1

(
γ̃({yj})
µN ({yj})

)
µ|Dj = µ̃.

Since {Dj}16j6k are disjoint,

µ̃6
k∑
j=1

µ|Dj 6 µ,

as desired.
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F.2. Useful results about the stochastic order �st. We next state and prove a few
well-known results regarding the stochastic order �st. These are useful when proving the
existence of p-variables.

LEMMA F.3. Suppose that F,G ∈ Π(R) are atomless and F 6= G. Then there exists a
bounded random variable φ on R such that its law under F is U1 and its law under G is
�st U1 but distinct from U1.

PROOF. We pick a random variable φ that has law U1 and is comonotone with dG/dF
under the law F . In particular, φ and dG/dF are positively associated. Therefore, for α ∈
[0,1],

G(φ6 α) =

∫
dG

dF
1{φ6α}dF >

∫
dG

dF
dF

∫
1{φ6α}dF = F (φ6 α) = α.

Since dG/dF is not a constant under F , there exists α ∈ (0,1) such that the inequality is
strict.

LEMMA F.4. Suppose that F1, . . . ,FL,G are atomless probability measures on [0,1].

(i) If Fi �st U1 for all i and G≺st U1, then there exists a random variable Ψ : [0,1]→ [0,1]
such that Ψ|Fi �st U1 for all i and Ψ|G = U1.

(ii) If there exists β ∈ (0,1) such that dFi/dU1 6 1 on [0, β) and dFi/dU1 > 1 on (β,1],
and Fi �st U1 for all i and G= U1, then there exists a random variable Ψ : [0,1]→ [0,1]
such that Ψ|Fi �st U1 for all i and Ψ|G ≺st U1.

PROOF. (i) Let F = maxFi and Id be the identity on [0,1]. Let F̃ , G̃ and F̃i be the

corresponding cdfs. G̃ > Id > F̃ > F̃i and F̃i|Fi �st Id|Fi
law
= U1 for each i. Hence G̃ follows

U1 underG and it stochastically dominates U1 under each Fi by Theorem 1.A.3.(a) of Shaked
and Shanthikumar (2007).

(ii) Denote by α = min{β − Fi([0, β))}> 0. Pick τ such that maxFi([β,β + 2τ))< α.
Define

Ψ(x) =

{
x if x ∈ [0, β + τ ]∪ [β + 2τ,1];

x− τ otherwise.

By construction, it is then easy to check that Ψ|U1
≺st U1 and Ψ|Fi �st U1.
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